如图,四边形ABCD中,AD‖BC,∠ABC=∠BAD=90°,AB为⊙O的直径.

(1)若AD=2,AB=BC=8,连接OC、OD.①求△COD的面积;②试判断直线CD与⊙O的位置关系,说明理由.(2)若直线CD与⊙O相切于F,AD=x(x>0),AB... (1)若AD=2,AB=BC=8,连接OC、OD.
①求△COD的面积;
②试判断直线CD与⊙O的位置关系,说明理由.
(2)若直线CD与⊙O相切于F,AD=x(x>0),AB=8.试用x表示四边形ABCD的面积S
展开
huangql2011
高粉答主

推荐于2016-12-01 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:3.3万
采纳率:92%
帮助的人:4836万
展开全部
(1)若AD=2,AB=BC=8,连接OC、OD.
①求△COD的面积;
∵AD‖BC,∠ABC=∠BAD=90°
∴四边形ABCD是梯形
梯形面积=(AD+BC)*AB/2=40
∵AB为⊙O的直径
∴S△AOD=OA*AD/2=AB*AD/4=4
∴S△BOC=OB*BC/2=AB*BC/4=16
∴S△COD=梯形面积-S△AOD-S△BOC=20
②试判断直线CD与⊙O的位置关系,说明理由。
过O作OE⊥CD交于点E,则有S△COD=OE*CD/2
∵AD‖BC,∠ABC=∠BAD=90°,AD=2,AB=BC=8
∴CD=√[AB²+(BC-AD)²]=10
∴OE=2S△COD/CD=4=AB/2
直线CD与⊙O的位置关系为相切。
(2)若直线CD与⊙O相切于F,AD=x(x>0),AB=8.试用x表示四边形ABCD的面积S
∵AD‖BC,∠ABC=∠BAD=90°
∴四边形ABCD是梯形,CD=√[AB²+(BC-AD)²]
∵直线CD与⊙O相切于F,
∴△OAD≌△OFD,△OBC≌△OFC
∴AD=DF,BC=CF,CD=CF+DF=AD+BC
∵AD=x(x>0),AB=8,CD=√[AB²+(BC-AD)²]
∴BC=16/x
四边形ABCD的面积S=(AD+BC)*AB/2=4x+64/x
安宁的知识小库
2012-12-16 · TA获得超过683个赞
知道答主
回答量:162
采纳率:0%
帮助的人:64.8万
展开全部
1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式