设y=ln(x+√x^2+1),求y'(√3)
1个回答
展开全部
解:先求y'
y'=[x+(x²+1)^(1/2)]'/[x+(x²+1)^(1/2)]
=[1+1/2*(x²+1)^(-1/2)*2x]/[x+(x²+1)^(1/2)]
=[(x²+1)^(1/2)+x]/(x²+1)^(1/2)/[x+(x²+1)^(1/2)]
=1/(x²+1)^(1/2)
故y'(3^(1/2))=1/(3+1)^(1/2)=1/2
希望能帮到你~
y'=[x+(x²+1)^(1/2)]'/[x+(x²+1)^(1/2)]
=[1+1/2*(x²+1)^(-1/2)*2x]/[x+(x²+1)^(1/2)]
=[(x²+1)^(1/2)+x]/(x²+1)^(1/2)/[x+(x²+1)^(1/2)]
=1/(x²+1)^(1/2)
故y'(3^(1/2))=1/(3+1)^(1/2)=1/2
希望能帮到你~
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询