计算:定积分∫(在上1 ,在下√2/2 )(√1-X^2)/x^2 dx求详细过程答案,拜托大神...
2个回答
展开全部
解:
令x=sint,则dx=cost dt
∫(√2/2→1)√(1-x²)/x²dx
=∫(π/4→π/2)cost/sin²t·costdt
=∫(π/4→π/2)cos²t/sin²t dt
=∫(π/4→π/2)cot²t dt
=∫(π/4→π/2)(csc²t-1) dt
=(-cot²t-t)|(π/4→π/2)
=-π/2-(-1-π/4)
=1-π/4
令x=sint,则dx=cost dt
∫(√2/2→1)√(1-x²)/x²dx
=∫(π/4→π/2)cost/sin²t·costdt
=∫(π/4→π/2)cos²t/sin²t dt
=∫(π/4→π/2)cot²t dt
=∫(π/4→π/2)(csc²t-1) dt
=(-cot²t-t)|(π/4→π/2)
=-π/2-(-1-π/4)
=1-π/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询