2个回答
展开全部
解:分部积分
∫(0→1)arctanx dx
=xarctanx|(0→1)-∫(0→1)x/(1+x²)dx
=π/4-1/2·∫(0→1)1/(1+x²)d(x²+1)
=π/4-ln(1+x²)|(0→1)
=π/4-(ln2-ln1)
=π/4-ln2
∫(0→1)arctanx dx
=xarctanx|(0→1)-∫(0→1)x/(1+x²)dx
=π/4-1/2·∫(0→1)1/(1+x²)d(x²+1)
=π/4-ln(1+x²)|(0→1)
=π/4-(ln2-ln1)
=π/4-ln2
追问
第二步骤中的1/2到第三步就没有了呢?谢谢
追答
解:分部积分
∫(0→1)arctanx dx
=xarctanx|(0→1)-∫(0→1)x/(1+x²)dx
=π/4-1/2·∫(0→1)1/(1+x²)d(x²+1)
=π/4-1/2·ln(1+x²)|(0→1)
=π/4-1/2·(ln2-ln1)
=π/4-1/2·ln2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询