为什么说不可导点,也是极值点?什么叫不可导点?为什么不可导点,不可求导?
因为这点不在定义域上。
既然这点不在定义域上,那么这点就不可导,既然不可导,就叫做不可导点,既然是不可导点,自然不可求导。
例如:f(x)=x^2,x≠0这个函数在点(0,0),就不可导,即f'(0)=lim,x-0→0,因为定义域上没有x=0这点,则该式子没有意义,但是极限值还是存在的,为0,即limf(0)=0,x→0,就是说,x不能为0,但可以无限接近0,对应的f(x)也是不能为0,但是也可以无限接近0。
极值点、驻点、拐点的区别
一、定义不同
1、极值点:若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
2、驻点:函数的一阶导数为0地点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。
3、拐点:又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。
二、性质不同
1、在驻点处的单调性可能改变,在拐点处凹凸性可能改变。
2、拐点:使函数凹凸性改变的点。
3、驻点:一阶导数为零。
三、特征不同
1、极值点不一定是驻点。如y=|x|,在x=0点处不可导,故不是驻点,但是极(小)值点。
2、驻点也不一定是极值点。如y=x³,在x=0处导数为0,是驻点,但没有极值,故不是极值点。
3、该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
2024-08-28 广告
因为这点不在定义域上。既然这点不在定义域上,那么这点就不可导,既然不可导,就叫做不可导点,既然是不可导点,自然不可求导。
例如:f(x)=x^2,x≠0这个函数在点(0,0),就不可导,即f'(0)=lim[(f(x)-f(0))/(x-0)],x-0→0,因为定义域上没有x=0这点,则该式子没有意义,但是极限值还是存在的,为0,即limf(0)=0,x→0,就是说,x不能为0,但可以无限接近0,对应的f(x)也是不能为0,但是也可以无限接近0。
扩展资料:
极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。
极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
参考资料来源:百度百科-极值点
例如f(x)=x^2,x≠0,那么,这个函数在点(0,0),就不可导,即f'(0)=lim[(f(x)-f(0))/(x-0)],x-0→0,因为定义域上没有x=0这点,则该式子没有意义,但是极限值还是存在的,为0,即limf(0)=0,x→0,就是说,x不能为0,但可以无限接近0,对应的f(x)也是不能为0,但是也可以无限接近0。
这个点在定义域上的,还是不可导点吗?
函数的某点是否可导,就要看该点是否在定义域上,该点是否左右连续,即使这点在定义域上,如果不左右连续,依然不可导。
例如函数:f(x)=x^2,x≦-1;f(x)=0,x=0;f(x)=x^2,x≧1;这个函数在x=0处是有定义的,但是左右不连续,因为x在(-1,0)和(0,1)两个区间内没有定义,这两个区间都是x=0的邻域,这样的话,x=0这点就没有极限,因此就不可导,因为求导就是求极限的一种。
关于某点是否可到,要满足一下条件:(1)该点有定义,即在定义域内;(2)该点左右连续,因为连续才有极限,有极限才有导数。
广告 您可能关注的内容 |