为什么样本方差服从卡方分布?请帮忙证明一下

为什么样本方差服从卡方分布?有哪位高手知道的,请帮忙证明一下,谢谢。。。... 为什么样本方差服从卡方分布?有哪位高手知道的,请帮忙证明一下,谢谢。。。 展开
 我来答
教育小百科达人
2020-10-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

不是样本方差服从卡方分布。应该是(n-1)S2/σ2服从(n-1)卡方分布,这个证明需要用到矩阵知识,记住有这个就可以。

卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。



扩展资料:

在抽样分布理论一节里讲到,从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,…,ξn的一次取值,将 n 个随机变量针对总体均值与方差进行标准化得(i=1,…,n),显然每个都是服从标准正态分布的。

若式子包含有 n 个变量,其中k 个被限制的样本统计量,则这个表达式的自由度为 n-k。比如中包含ξ1,ξ2,…,ξn这 n 个变量,其中ξ1-ξn-1相互独立,ξn为其余变量的平均值,因此自由度为 n-1。

上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
匿名用户
推荐于2017-11-25
展开全部
  • 不是样本方差服从(n-1)卡方分布,是(n-1)S2/σ2服从(n-1)卡方分布,这个证明需要用到矩阵知识,我们只需要记住这个定理即可,因为即使你看懂了高深的证明对理解也是徒劳,实在有兴趣的话可以参看“浙江大学 概率论与数理统计 第四版 ”(高等教育出版社)课本的第145页下面的附录中证明

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
机械者乎哉
2020-03-02
知道答主
回答量:6
采纳率:0%
帮助的人:4767
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式