1、按规律填数1,2,6,15,31,56,92,( )
141
1+1²=2
2+2²=6
6+3²=15
15+4²=31
31+5²=56
56+6²=91
91+7²=141
扩展资料
找规律的方法:
1、标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
2、斐波那契数列法:每个数都是前两个数的和。
3、等差数列法:每两个数之间的差都相等。
4、跳格子法:可以间隔着看,看隔着的数之间有什么关系,如14,1,12,3,10,5,第奇数项成等差数列,第偶数项也成等差数列,于是接下来应该填8。
答案是141
规律:前面的数+前面数的位数的平方
2=1+1²
6=2+2²
15=6+3²
31=15+4²
56=31+5²
92=56+6²
所以()=92+7²=141
扩展资料:
数字推理的规律一般限于加、减、乘、除、平方、开方以及它们的组合等形式,根据形式可分为显含规律和暗含规律两类:
一、显含规律
相邻数之间通过简单的加、减、乘、除、平方、开方等运算发生联系,产生规律,主要有以下几种规律:
1、四则运算:相邻两个数加、减、乘、除等于第三数或者是相邻两个数加、减、乘、除后再加或者减一个常数等于第三数。
2、等差数列:数列中各个数字构成等差数列,包括数列中相邻两个数相减后的差值成等差数列的二级等差数列和两次差值构成等差数列的三级等差数列。
3、等比数列:数列中各个数字依次构成等比数列,包括二级等比数列或者三级等比数列。
4、平方数列:前一个数的平方等于第二个数,包括前一个数的平方再加减一个常数等于第二个数的平方数列变形。
5、倍数数列:前一个数乘一个倍数加减一个常数等于第二个数。
6、隔项数列:数列相隔两项呈现一定规律,这类数列包含的数字多。
7、奇偶数列:数列全奇数或者全偶数或者奇偶间隔。
8、排序数列:数列有特殊的序列规律。
二、暗含规律
数列规律不明显,但每一个数字本身都暗含规律,综合来看才具有全局规律。
1、幂次规律:数列中每一个数字都是n的平方或者是n的平方加减一个常数,或者是n的平方加减n,形成规律;每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n,形成规律。
2、倍数规律:数列中每一个数字都是n的倍数加减一个常数,而这些n本身构成一定规律。
规律是分子是1
,分母是m(m+1)
m是指第几个数
例如第6个数m=6
则就是1/6×7=1/42
广告 您可能关注的内容 |