证明级数(-1)^n/n是收敛的 1个回答 #热议# 不吃早饭真的会得胆结石吗? hlcyjbcgsyzxg 推荐于2016-12-01 · TA获得超过1.1万个赞 知道大有可为答主 回答量:3784 采纳率:0% 帮助的人:1470万 我也去答题访问个人页 关注 展开全部 设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-07-03 证明级数∑n=1 (n/n+1)^(n^2)收敛性 2022-11-16 怎么证明级数:1/n-ln(1+1/n)收敛啊? 2020-01-14 级数(-1)^n / n 为啥收敛 ?怎么证明? 2 2022-06-01 证明级数(-1)^n/n是收敛的 2022-06-13 级数收敛证明 (-1)^n/n这个级数怎么证明收敛? 2022-06-13 证明级数∑n=1 (n/n+1)^(n^2)收敛性 2021-07-04 证明级数∑(n=1到∞)(-1)^(n-1)*sin(π∕(n+1))是绝对收敛 2021-07-03 证明级数∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))是绝对收敛 更多类似问题 > 为你推荐: