展开全部
设椭圆方程为x²/a²+y²/b²=1,焦点为F1(c,0),F2(-c,0)(c>0)
设A(x,y)为椭圆上一点
则AF1=√[(x-c)²+y²]
设准线为x=f
则A到准线的距离L为│f-x│
设AF1/L=e则
(x-c)²+y²=e²(f-x)²
化简得(1-e²)x²-2xc+c²+y²-e²f²+2e²fx=0
令2c=2e²f
则f=c/e²
令该点为右顶点则(c/e²-a)e=a-c
当e=c/a时上式成立
故f=a²/c
则方程为(1-e²)x²+y²=e²f²-c²
与原椭圆方程对比则
a²=(e²f²-c²)/(1-e²),b²=e²f²-c²
a²=(c²/e²-c²)/(1-e²),b²=c²/e²-c²
a²-b²=(c²/e²-c²)e²/(1-e²)=c²
准线的定义:
对于椭圆标准方程(焦点在X轴) x^2/a^2+y^2/b^2=1(a>b>c a为半长轴 b为半短轴 c为焦距的一半)
对应的准线方程 x=a^2/c(焦点(c,0)) x=-a^2/c(焦点 (-c,o)) 准线的性质:
有这样的性质:椭圆上任意一点到一焦点与其对应的准线的距离比为离心率。(同在Y轴一侧的焦点与准线对应)
设A(x,y)为椭圆上一点
则AF1=√[(x-c)²+y²]
设准线为x=f
则A到准线的距离L为│f-x│
设AF1/L=e则
(x-c)²+y²=e²(f-x)²
化简得(1-e²)x²-2xc+c²+y²-e²f²+2e²fx=0
令2c=2e²f
则f=c/e²
令该点为右顶点则(c/e²-a)e=a-c
当e=c/a时上式成立
故f=a²/c
则方程为(1-e²)x²+y²=e²f²-c²
与原椭圆方程对比则
a²=(e²f²-c²)/(1-e²),b²=e²f²-c²
a²=(c²/e²-c²)/(1-e²),b²=c²/e²-c²
a²-b²=(c²/e²-c²)e²/(1-e²)=c²
准线的定义:
对于椭圆标准方程(焦点在X轴) x^2/a^2+y^2/b^2=1(a>b>c a为半长轴 b为半短轴 c为焦距的一半)
对应的准线方程 x=a^2/c(焦点(c,0)) x=-a^2/c(焦点 (-c,o)) 准线的性质:
有这样的性质:椭圆上任意一点到一焦点与其对应的准线的距离比为离心率。(同在Y轴一侧的焦点与准线对应)
展开全部
还有个第二定义,就是把椭圆看作两个抛物线(有准线和焦点那个)来推导,具体的话楼主可以试下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第二定义
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |