已知,如图,△ABC内接于⊙O,AE是⊙O的直径,AD是△ABC中BC边上的高求证:AC·AB=AE·AD
展开全部
证明:连接BE
∵ ∠C、∠E是AB弧的圆周角
∴∠C=∠E
∵AD∥BC,AE是⊙O的直径
∴Rt△ABE ∽Rt△ADC
∴AB/AD=AE/AC
即AC·AB=AE·AD
∵ ∠C、∠E是AB弧的圆周角
∴∠C=∠E
∵AD∥BC,AE是⊙O的直径
∴Rt△ABE ∽Rt△ADC
∴AB/AD=AE/AC
即AC·AB=AE·AD
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:连接EC.
∵AE是⊙O的直径,CD是△ABC中AB边上的高,
∴∠ACE=∠CDB=90°.
又∵∠B=∠E,
∴△BDC∽△ECA.
∴BCAE=
CDAC.
∴AC•BC=AE•CD
∵AE是⊙O的直径,CD是△ABC中AB边上的高,
∴∠ACE=∠CDB=90°.
又∵∠B=∠E,
∴△BDC∽△ECA.
∴BCAE=
CDAC.
∴AC•BC=AE•CD
参考资料: http://www.jyeoo.com/math/ques/detail/728ff176-b9c0-4d5d-9b3d-a2b5fc4045a4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接BE
∵AE是直径 所以∠ABE=∠ADC=90°
又∠ACD=∠AEB
△ABE∽△ADC
∴AC/AE=AD/AB
∴AC*AB=AE*AD
∵AE是直径 所以∠ABE=∠ADC=90°
又∠ACD=∠AEB
△ABE∽△ADC
∴AC/AE=AD/AB
∴AC*AB=AE*AD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询