5个回答
展开全部
里面进行配方,得到1-(x-1)^2,外面的x可以放到dx里面去,变成(x-1)^2,再进行计算
展开全部
x-1=cost,dx=-sintdt
x=0,t=π
x=2,t=0
原式
=∫[π,0] cost*√(1-cos^2t)*(-sint)dt
=∫[π,0] cost*sint*(-sint)dt
=∫[0,π] sin^2tdsint
=sin^3t/3[0,π]
=0
x=0,t=π
x=2,t=0
原式
=∫[π,0] cost*√(1-cos^2t)*(-sint)dt
=∫[π,0] cost*sint*(-sint)dt
=∫[0,π] sin^2tdsint
=sin^3t/3[0,π]
=0
展开全部
∫(0->2)x√(2x-x^2) dx
2x-x^2 = 1-(x^2-2x+1) = 1-(x-1)^2
let
x-1= sina
dx=cosada
x=0, a=-π/2
x=2, a=π/2
∫(0->2)x√(2x-x^2) dx
=∫(-π/2->π/2) sina (cosa)^2 da
=(-1/3)[(cosa)^3](-π/2->π/2)
=0
2x-x^2 = 1-(x^2-2x+1) = 1-(x-1)^2
let
x-1= sina
dx=cosada
x=0, a=-π/2
x=2, a=π/2
∫(0->2)x√(2x-x^2) dx
=∫(-π/2->π/2) sina (cosa)^2 da
=(-1/3)[(cosa)^3](-π/2->π/2)
=0
本回答被网友采纳
展开全部
用换元法
令x-1=cost,dx=-sintdt
x=0,t=π
x=2,t=0
原式
=∫[π,0] cost*√(1-cos^2t)*(-sint)dt
=∫[π,0] cost*sint*(-sint)dt
=∫[0,π] sin^2tdsint
=sin^3t/3[0,π]
=0
令x-1=cost,dx=-sintdt
x=0,t=π
x=2,t=0
原式
=∫[π,0] cost*√(1-cos^2t)*(-sint)dt
=∫[π,0] cost*sint*(-sint)dt
=∫[0,π] sin^2tdsint
=sin^3t/3[0,π]
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询