不定积分x^6/根号(1+x^2)等于多少
2个回答
展开全部
x⁶ = x⁴[(1 + x²) - 1] = x⁴(1 + x²) - x⁴
= x⁴(1 + x²) - x²[(1 + x²) - 1] = x⁴(1 + x²) - x²(1 + x²) + x²
∫ x⁶/√(1 + x²) dx
= ∫ [x⁴(1 + x²) - x²(1 + x²) + x²]/√(1 + x²) dx
= ∫ x⁴√(1 + x²) dx - ∫ x²√(1 + x²) dx + ∫ x²/√(1 + x²) dx
x = tanz,dx = sec²z dz
√(1 + x²) = √(1 + tan²z) = √sec²z = secz
= ∫ tan⁴zsec³z dz - ∫ tan²zsec³z dz + ∫ tan²zsecz dz
= ∫ (sec²z - 1)²sec³z dz - ∫ (sec²z - 1)sec³z dz + ∫ (sec²z - 1)secz dz
= ∫ (sec⁴z - 2sec²z + 1)sec³z dz - ∫ (sec²z - 1)sec³z dz + ∫ (sec²z - 1)secz dz
= ∫ (sec⁷z - 2sec⁵z + sec³z) dz - ∫ (sec⁵z - sec³z) dz + ∫ (sec³z - secz) dz
= ∫ (sec⁷z - 3sec⁵z + 3sec³z - secz) dz
由正割的归约公式:
∫ secⁿx dx = (secⁿ⁻²xtanx)/(n - 1) + [(n - 2)/(n - 1)]∫ secⁿ⁻²x dx
∫ sec³z dz
= (1/2)secztanz + (1/2)∫ secz dz
∫ sec⁵z dz
= (1/4)sec³ztanz + (3/4)∫ sec³z dz
= (1/4)sec³ztanz + (3/4)[(1/2)secztanz + (1/2)∫ secz dz]
= (1/4)sec³ztanz + (3/8)secztanz + (3/8)∫ secz dz
∫ sec⁷z dz
= (1/6)sec⁵ztanz + (5/6)∫ sec⁵z dz
= (1/6)sec⁵ztanz + (5/6)[(1/4)sec³ztanz + (3/8)secztanz + (3/8)∫ secz dz]
= (1/6)sec⁵ztanz + (5/24)sec³ztanz + (5/16)secztanz + (5/16)∫ secz dz
∴
∫ x⁶/√(1 + x²) dx
= ∫ (sec⁷z - 3sec⁵z + 3sec³z - secz) dz
= [(1/6)sec⁵ztanz + (5/24)sec³ztanz + (5/16)secztanz + (5/16)∫ secz dz]
- 3[(1/4)sec³ztanz + (3/8)secztanz + (3/8)∫ secz dz]
+ 3[(1/2)secztanz + (1/2)∫ secz dz]
- ∫ secz dz
= (1/6)sec⁵ztanz - (13/24)sec³ztanz + (11/16)secztanz - (5/16)∫ secz dz
= (1/6)sec⁵ztanz - (13/24)sec³ztanz + (11/16)secztanz - (5/16)ln|secz + tanz| + C
= (x/6)(1 + x²)^(5/2) - (13x/24)(1 + x²)^(3/2) + (11x/16)√(1 + x²) - (5/16)ln|x + √(1 + x²)| + C
= (x/48)(8x⁴ - 10x² + 15)√(1 + x²) - (5/16)ln|x + √(1 + x²)| + C
这题并不难,只是过程有点复杂,次数高啊。你好好看吧,满意的话望赐予最佳答案,谢谢。
= x⁴(1 + x²) - x²[(1 + x²) - 1] = x⁴(1 + x²) - x²(1 + x²) + x²
∫ x⁶/√(1 + x²) dx
= ∫ [x⁴(1 + x²) - x²(1 + x²) + x²]/√(1 + x²) dx
= ∫ x⁴√(1 + x²) dx - ∫ x²√(1 + x²) dx + ∫ x²/√(1 + x²) dx
x = tanz,dx = sec²z dz
√(1 + x²) = √(1 + tan²z) = √sec²z = secz
= ∫ tan⁴zsec³z dz - ∫ tan²zsec³z dz + ∫ tan²zsecz dz
= ∫ (sec²z - 1)²sec³z dz - ∫ (sec²z - 1)sec³z dz + ∫ (sec²z - 1)secz dz
= ∫ (sec⁴z - 2sec²z + 1)sec³z dz - ∫ (sec²z - 1)sec³z dz + ∫ (sec²z - 1)secz dz
= ∫ (sec⁷z - 2sec⁵z + sec³z) dz - ∫ (sec⁵z - sec³z) dz + ∫ (sec³z - secz) dz
= ∫ (sec⁷z - 3sec⁵z + 3sec³z - secz) dz
由正割的归约公式:
∫ secⁿx dx = (secⁿ⁻²xtanx)/(n - 1) + [(n - 2)/(n - 1)]∫ secⁿ⁻²x dx
∫ sec³z dz
= (1/2)secztanz + (1/2)∫ secz dz
∫ sec⁵z dz
= (1/4)sec³ztanz + (3/4)∫ sec³z dz
= (1/4)sec³ztanz + (3/4)[(1/2)secztanz + (1/2)∫ secz dz]
= (1/4)sec³ztanz + (3/8)secztanz + (3/8)∫ secz dz
∫ sec⁷z dz
= (1/6)sec⁵ztanz + (5/6)∫ sec⁵z dz
= (1/6)sec⁵ztanz + (5/6)[(1/4)sec³ztanz + (3/8)secztanz + (3/8)∫ secz dz]
= (1/6)sec⁵ztanz + (5/24)sec³ztanz + (5/16)secztanz + (5/16)∫ secz dz
∴
∫ x⁶/√(1 + x²) dx
= ∫ (sec⁷z - 3sec⁵z + 3sec³z - secz) dz
= [(1/6)sec⁵ztanz + (5/24)sec³ztanz + (5/16)secztanz + (5/16)∫ secz dz]
- 3[(1/4)sec³ztanz + (3/8)secztanz + (3/8)∫ secz dz]
+ 3[(1/2)secztanz + (1/2)∫ secz dz]
- ∫ secz dz
= (1/6)sec⁵ztanz - (13/24)sec³ztanz + (11/16)secztanz - (5/16)∫ secz dz
= (1/6)sec⁵ztanz - (13/24)sec³ztanz + (11/16)secztanz - (5/16)ln|secz + tanz| + C
= (x/6)(1 + x²)^(5/2) - (13x/24)(1 + x²)^(3/2) + (11x/16)√(1 + x²) - (5/16)ln|x + √(1 + x²)| + C
= (x/48)(8x⁴ - 10x² + 15)√(1 + x²) - (5/16)ln|x + √(1 + x²)| + C
这题并不难,只是过程有点复杂,次数高啊。你好好看吧,满意的话望赐予最佳答案,谢谢。
展开全部
令x=tanu,则:sinu=x/√(1+x^2),dx=[1/(cosu)^2]du,
∴∫[x^6/√(1+x^2)]dx
=∫{(tanu)^6/√[1+(tanu)^2]}[1/(cosu)^2]du
=∫[(tanu)^6/cosu]du
=∫{[1-(cosu)^2]^3/cosu}du
=∫{[1-3(cosu)^2+3(cosu)^4-(cosu)^6]/cosu}du
=∫(1/cosu)du-3∫cosudu+3∫(cosu)^3du-∫(cosu)^5du
=∫[cosu/(cosu)^2]du-3sinu+3∫(cosu)^2d(sinu)-∫(cosu)^4d(sinu)
=∫{1/[1-(sinu)^2]}d(sinu)-3sinu+3∫[1-(sinu)^2]d(sinu)
-∫[1-(sinu)^2]^2d(sinu)
=(1/2)∫{(1-sinu+1+sinu)/[(1-sinu)(1+sinu)]}d(sinu)-3sinu
+3∫d(sinu)-3∫(sinu)^2d(sinu)-∫[1-2(sinu)^2+(sinu)^4]d(sinu)
=(1/2)∫[1/(1+sinu)]d(sinu)+(1/2)∫[1/(1-sinu)]d(sinu)-3sinu
+3sinu-(sinu)^3-∫d(sinu)+2∫(sinu)^2d(sinu)-∫(sinu)^4d(sinu)
=(1/2)ln(1+sinu)-(1/2)ln(1-sinu)-(sinu)^3-sinu+(2/3)(sinu)^3
-(1/4)(sinu)^4+C
=(1/2)ln{[1+x/√(1+x^2)]/[1-x/√(1+x^2)]}-x/√(1+x^2)
-(1/3)[x/√(1+x^2)]^3-(1/4)[x/√(1+x^2)]^4+C
=(1/2)ln{[√(1+x^2)+x]/[√(1+x^2)-x]}-x/√(1+x^2)
-(1/3)[x/√(1+x^2)]^3-(1/4)[x/√(1+x^2)]^4+C
=ln[x+√(1+x^2)]-x/√(1+x^2)-(1/3)[x/√(1+x^2)]^3
-(1/4)[x/√(1+x^2)]^4+C
∴∫[x^6/√(1+x^2)]dx
=∫{(tanu)^6/√[1+(tanu)^2]}[1/(cosu)^2]du
=∫[(tanu)^6/cosu]du
=∫{[1-(cosu)^2]^3/cosu}du
=∫{[1-3(cosu)^2+3(cosu)^4-(cosu)^6]/cosu}du
=∫(1/cosu)du-3∫cosudu+3∫(cosu)^3du-∫(cosu)^5du
=∫[cosu/(cosu)^2]du-3sinu+3∫(cosu)^2d(sinu)-∫(cosu)^4d(sinu)
=∫{1/[1-(sinu)^2]}d(sinu)-3sinu+3∫[1-(sinu)^2]d(sinu)
-∫[1-(sinu)^2]^2d(sinu)
=(1/2)∫{(1-sinu+1+sinu)/[(1-sinu)(1+sinu)]}d(sinu)-3sinu
+3∫d(sinu)-3∫(sinu)^2d(sinu)-∫[1-2(sinu)^2+(sinu)^4]d(sinu)
=(1/2)∫[1/(1+sinu)]d(sinu)+(1/2)∫[1/(1-sinu)]d(sinu)-3sinu
+3sinu-(sinu)^3-∫d(sinu)+2∫(sinu)^2d(sinu)-∫(sinu)^4d(sinu)
=(1/2)ln(1+sinu)-(1/2)ln(1-sinu)-(sinu)^3-sinu+(2/3)(sinu)^3
-(1/4)(sinu)^4+C
=(1/2)ln{[1+x/√(1+x^2)]/[1-x/√(1+x^2)]}-x/√(1+x^2)
-(1/3)[x/√(1+x^2)]^3-(1/4)[x/√(1+x^2)]^4+C
=(1/2)ln{[√(1+x^2)+x]/[√(1+x^2)-x]}-x/√(1+x^2)
-(1/3)[x/√(1+x^2)]^3-(1/4)[x/√(1+x^2)]^4+C
=ln[x+√(1+x^2)]-x/√(1+x^2)-(1/3)[x/√(1+x^2)]^3
-(1/4)[x/√(1+x^2)]^4+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |