如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°

1,求证BD⊥平面PAC2,若PA=AB,求PB与AC所成角的余弦值。3,当平面PBC与平面PDC垂直是,求PA的长第一问我会求二三问,,,速求... 1,求证BD⊥平面PAC
2,若PA=AB,求PB与AC所成角的余弦值。
3,当平面PBC与平面PDC垂直是,求PA的长

第一问我会求二三问,,,速求
展开
百度网友48abd03
2012-12-18 · TA获得超过1.6万个赞
知道大有可为答主
回答量:1786
采纳率:66%
帮助的人:721万
展开全部
1. 证明:∵PA⊥平面ABCD,又BD在面ABCD内
从而 PA⊥BD,则 BD⊥PA
而 底面ABCD是菱形
从而 BD⊥AC
   ∴BD⊥PA BD⊥AC
又 PA和AC相交于A
∴BD⊥平面PAC
2.解: 可得 AC=2√3 PC=4
设 AC交BD于O 取PD中点E 连接EO EC在三角形EOC中
PB与AC所成的角 即是∠EOC
在三角形PDC中 E是中点,
设EC=x 由余弦定理可求得EC=x=2√2
在三角形PBD中 知 EO=PB/2=√2
在三角形EOC中,有EO=√2,OC=AC/2=√3,EC=2√2
∴有余弦定理易求得:∠PB与AC所成的角即为∠EOC=√6/4 [√表示平方根]
3.解:过B点作BF⊥PC于F 连接DF 则 DF⊥PC
RT△BFC≌RT△DFC
从而 DF=BF
则 △BFD是RT△
BD=2 从而OF=1
又 PC⊥平面BDF
因此 PC⊥OF
又△OCF∽△ACP
其 对应边成比例
从而 求到PA=√6 [√表示平方根]
阳瑞仪器热分析仪
2024-10-19 广告
MiniFlex600-C是广州阳瑞仪器科技有限公司代理的一款高性能电商平台射线衍射仪,源自日本理学集团(RIGAKU)。它以其小型化、高效能著称,主机尺寸紧凑,操作便捷。该设备配备了先进的实时角度校正系统、小型探测器和探测器单色器,显著提... 点击进入详情页
本回答由阳瑞仪器热分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式