如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
1,求证BD⊥平面PAC2,若PA=AB,求PB与AC所成角的余弦值。3,当平面PBC与平面PDC垂直是,求PA的长第一问我会求二三问,,,速求...
1,求证BD⊥平面PAC
2,若PA=AB,求PB与AC所成角的余弦值。
3,当平面PBC与平面PDC垂直是,求PA的长
第一问我会求二三问,,,速求 展开
2,若PA=AB,求PB与AC所成角的余弦值。
3,当平面PBC与平面PDC垂直是,求PA的长
第一问我会求二三问,,,速求 展开
1个回答
展开全部
1. 证明:∵PA⊥平面ABCD,又BD在面ABCD内
从而 PA⊥BD,则 BD⊥PA
而 底面ABCD是菱形
从而 BD⊥AC
∴BD⊥PA BD⊥AC
又 PA和AC相交于A
∴BD⊥平面PAC
2.解: 可得 AC=2√3 PC=4
设 AC交BD于O 取PD中点E 连接EO EC在三角形EOC中
PB与AC所成的角 即是∠EOC
在三角形PDC中 E是中点,
设EC=x 由余弦定理可求得EC=x=2√2
在三角形PBD中 知 EO=PB/2=√2
在三角形EOC中,有EO=√2,OC=AC/2=√3,EC=2√2
∴有余弦定理易求得:∠PB与AC所成的角即为∠EOC=√6/4 [√表示平方根]
3.解:过B点作BF⊥PC于F 连接DF 则 DF⊥PC
RT△BFC≌RT△DFC
从而 DF=BF
则 △BFD是RT△
BD=2 从而OF=1
又 PC⊥平面BDF
因此 PC⊥OF
又△OCF∽△ACP
其 对应边成比例
从而 求到PA=√6 [√表示平方根]
从而 PA⊥BD,则 BD⊥PA
而 底面ABCD是菱形
从而 BD⊥AC
∴BD⊥PA BD⊥AC
又 PA和AC相交于A
∴BD⊥平面PAC
2.解: 可得 AC=2√3 PC=4
设 AC交BD于O 取PD中点E 连接EO EC在三角形EOC中
PB与AC所成的角 即是∠EOC
在三角形PDC中 E是中点,
设EC=x 由余弦定理可求得EC=x=2√2
在三角形PBD中 知 EO=PB/2=√2
在三角形EOC中,有EO=√2,OC=AC/2=√3,EC=2√2
∴有余弦定理易求得:∠PB与AC所成的角即为∠EOC=√6/4 [√表示平方根]
3.解:过B点作BF⊥PC于F 连接DF 则 DF⊥PC
RT△BFC≌RT△DFC
从而 DF=BF
则 △BFD是RT△
BD=2 从而OF=1
又 PC⊥平面BDF
因此 PC⊥OF
又△OCF∽△ACP
其 对应边成比例
从而 求到PA=√6 [√表示平方根]
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询