初二数学二次根式题
计算:1/(2+√2)+1/(3√2+3√3)+1/(4√3+3√4)+…+1/(100√99+99√100)...
计算:1/(2+√2)+1/(3√2+3√3)+1/(4√3+3√4)+…+1/(100√99+99√100)
展开
2个回答
展开全部
1/[n√(n+1)+(n+1)√n]
=[n√(n+1)-(n+1)√n]/[n√(n+1)+(n+1)√n][n√(n+1)-(n+1)√n]
=[n√(n+1)-(n+1)√n]/[n^2(n+1)-n(n+1)^2]
=[n√(n+1)-(n+1)√n]/[-n(n+1)]
=(n+1)√n/[n(n+1)]-n√(n+1)/[n(n+1)]
=1/√n-1/√(n+1)
所以原式=(1/√1-1/√2)+(1/√2-1/√3)+……+(1/√99-1/√100)
=1/√1-1/√100
=1-1/10
=9/10
=[n√(n+1)-(n+1)√n]/[n√(n+1)+(n+1)√n][n√(n+1)-(n+1)√n]
=[n√(n+1)-(n+1)√n]/[n^2(n+1)-n(n+1)^2]
=[n√(n+1)-(n+1)√n]/[-n(n+1)]
=(n+1)√n/[n(n+1)]-n√(n+1)/[n(n+1)]
=1/√n-1/√(n+1)
所以原式=(1/√1-1/√2)+(1/√2-1/√3)+……+(1/√99-1/√100)
=1/√1-1/√100
=1-1/10
=9/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询