不定积分∫[1/(x-1)(x+2)]dx
3个回答
展开全部
∫[1/(x-1)(x+2)]dx
=(1/3)∫[1/(x-1) -1/(x+2)]dx
=(1/3) ln|(x-1)/(x+2)| + C
=(1/3)∫[1/(x-1) -1/(x+2)]dx
=(1/3) ln|(x-1)/(x+2)| + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫[1/(x-1)(x+2)]dx
=1/3∫[1/(x-1)-1/(x+2)]dx
=1/3{∫[1/(x-1)dx-∫[1/(x+2)]dx}
=1/3{ln[(x-1)/(x+2)]}+C
=1/3∫[1/(x-1)-1/(x+2)]dx
=1/3{∫[1/(x-1)dx-∫[1/(x+2)]dx}
=1/3{ln[(x-1)/(x+2)]}+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫1/[(x-1)(x+2)]dx
=log(x-1)/3-log(x+2)/3
∫[1/(x-1)](x+2)dx
=3*log(x-1)+x
=log(x-1)/3-log(x+2)/3
∫[1/(x-1)](x+2)dx
=3*log(x-1)+x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询