设椭圆C:x2╱a2+y2╱b2=1(a>b>0)的离心率e为根号2╱2,点A是椭圆上的一点,且A到

设椭圆C:x2╱a2+y2╱b2=1(a>b>0)的离心率e为根号2╱2,点A是椭圆上的一点,且A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程(2)若椭圆C上一动点... 设椭圆C:x2╱a2+y2╱b2=1(a>b>0)的离心率e为根号2╱2,点A是椭圆上的一点,且A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程(2)若椭圆C上一动点P(x0,y0)关于直线y=2x的对称点P1(x1.y1),求3x1-4y1的取值范围 展开
匿名用户
推荐于2016-12-02
展开全部
1.求椭圆C的方程。
2.椭圆C上一动点P(X0,Y0)关于直线y=2x的对称点P1(X1,Y1),求3X1-4Y1的取值范围

A到两焦点的距离之和为4,即2a=4,a=2
e=c/a=√2/2,则c=根号2
c^2=a^2-b^2
2=4-b^2,b^2=2
即方程是:x^2/4+y^2/2=1.

因为点P1与点P关于直线y=2x对称,有
(yo+y1)/2=2*(xo+x1)/2 ①
(yo-y1)/(xo-x1)=-0.5 ②
整理得 x1= (4yo-3xo)/5 y1=(4x0+3y0)/5
代入3x1-4y1=-5x0
又点A在椭圆上,所以-2≤xo≤2,所以-10≤xo≤10
所以取值范围为[-10,10]

以下仅供参考:

A在椭圆上
可设x0=2cosθ,y0=根号2*sinθ
A(2cosθ,根号2*sinθ)
过A做垂直直线2x-y=0的直线L
所以直线L斜率=-1/2
所以直线L y-根号2*sinθ=-1/2(x-2cosθ)
该直线与2x-y=0的交点M
M(2/5(根号2*sinθ+cosθ),4/5(根号2*sinθ+cosθ))
所以A关于M的对称点P
x1=(4根号2*sinθ-6cosθ)/5
y1=(3倍根号2sinθ+8cosθ)/5
所以3x1-4y1=10cosθ
所以 -10≤3x1-4y1≤10
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式