√(x²+1)的不定积分推导过程
∫ √(x²+1) dx=(1/2)x√(x²+1) + (1/2)ln(√(x²+1)+x) + C。C为积分常数。
解答过程如下:
令x=tanu,则√(x²+1)=secu,dx=sec²udu
=∫ sec³u du
下面计算
∫sec³udu
=∫ secudtanu
=secutanu - ∫ tan²usecudu
=secutanu - ∫ (sec²u-1)secudu
=secutanu - ∫ sec³udu + ∫ secudu
=secutanu - ∫ sec³udu + ln|secu+tanu|
将- ∫ sec³udu移支等式左边与左边合并后除以系数得:
∫sec³udu=(1/2)secutanu + (1/2)ln|secu+tanu| + C
因此原式=(1/2)secutanu + (1/2)ln|secu+tanu| + C
=(1/2)x√(x²+1) + (1/2)ln(√(x²+1)+x) + C
扩展资料:
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
求不定积分的方法:
第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
2024-10-13 广告
令x=tanu,则√(x²+1)=secu,dx=sec²udu
=∫ sec³u du
下面计算
∫sec³udu
=∫ secudtanu
=secutanu - ∫ tan²usecudu
=secutanu - ∫ (sec²u-1)secudu
=secutanu - ∫ sec³udu + ∫ secudu
=secutanu - ∫ sec³udu + ln|secu+tanu|
将- ∫ sec³udu移支等式左边与左边合并后除以系数得:
∫sec³udu=(1/2)secutanu + (1/2)ln|secu+tanu| + C
因此
原式=(1/2)secutanu + (1/2)ln|secu+tanu| + C
=(1/2)x√(x²+1) + (1/2)ln(√(x²+1)+x) + C
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
2012-12-22