已知函数f(x)=3sinxcosx-3√3sin²x+(3√3)/2(x∈R).试求函数f(x)的最小正周期及其对称轴和对称中心
1个回答
展开全部
f(x) = 3sinxcosx - 3√3sin²x + (3√3)/2
= (3/2)(sin2x + cos2x + √3 - 1)
= (3/2)[sin(2x + π/4) + √3 - 1]
(1)最小正周期:
T = 2π/2 = π
(2)对称轴:
2x + π/4 = 2kπ + π/2
对称轴方程:x = kπ + π/8
(3)对称中心:
2x + π/4 = 2kπ
x = kπ - π/8
对称中心:(kπ - π/8 , 0)
= (3/2)(sin2x + cos2x + √3 - 1)
= (3/2)[sin(2x + π/4) + √3 - 1]
(1)最小正周期:
T = 2π/2 = π
(2)对称轴:
2x + π/4 = 2kπ + π/2
对称轴方程:x = kπ + π/8
(3)对称中心:
2x + π/4 = 2kπ
x = kπ - π/8
对称中心:(kπ - π/8 , 0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询