求解一道不定积分的题目!谢谢啦!!!!!!!!

请写出步骤和思路!谢谢!... 请写出步骤和思路!谢谢! 展开
lic_ling0
2012-12-20 · TA获得超过5022个赞
知道大有可为答主
回答量:2950
采纳率:0%
帮助的人:743万
展开全部
解:设t=arcsinx,则x=sint,dx=costdt
∴∫[arcsinx/(1-x^2)^(3/2)]dx=∫{tcost/[1-(sinx)^2]^(3/2)}dt
=∫[t/(cost)^2]dt
=∫t(sect)^2dt
=∫td(tant)
=ttant-∫tantdt
=ttant±ln(sect)+c
∴原式=arcsinxtan(arcsinx)±ln[sec(arcsinx)]+c
又∵tan(arcsinx)=sin(arcsinx)/cos(arcsinx)
=x/√[1-sin(arcsinx)^2]
=x/√(1-x^2)
又∵ln[(secarcsinx)]=-ln[cos(arcsinx)]
=-ln[1-sin(arcsinx)^2]^(1/2)
=-[ln(1-x^2)]/2
∴原式=[xarcsinx/√(1-x^2)]±[ln(1-x^2)]/2+c
={xarcsinx±[ln(1-x^2)]√(1-x^2)}/[2√(1-x^2)]+c
匿名用户
2012-12-20
展开全部
标准的三角换元法! 令 x=sint,代入

=∫ t / (cos t)^2 dt =∫ t d tant (分部积分)

=t 乘 tan t + ln(cost) + C

= arcsinx乘x / 根号(1-x^2) + 1/2 乘 ln(1-x^2) +C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式