求帮忙解下图这个积分上限函数导数。详解。谢。
1个回答
展开全部
y=∫(x^2,0)xcost^2dt=-x∫(0,x^2)cost^2dt
dy/dx=-∫(0,x^2)cost^2dt-2x^2cosx^4
dy/dx=-∫(0,x^2)cost^2dt-2x^2cosx^4
追问
谢了,不过和答案有点出入,答案最前面没有负号。
追答
那答案是错的,x^2在下限,肯定有个负号
y=∫(x^2,0)xcost^2dt=-x ∫(0,x^2)cost^2dt
后面是乘积的导数:
x的导数是1,∫(0,x^2)cost^2dt的导数=先把被积函数的t换成x^2,然后乘以x^2的导数2x(复合函数求导),所以y'=-( ∫(0,x^2)cost^2dt+x(cosx^4*2x)
=-( ∫(0,x^2)cost^2dt+2x^2cosx^4)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询