化简 sin(π/2+a)cos(π/2-a)/cos(3π/2-a)sin(3π/2+a)
4个回答
展开全部
sin(π/2+a)cos(π/2-a)/cos(3π/2-a)sin(3π/2+a)
=(cosasina)/(-sinα*-cosα)
=1
sin25π/6+cos25π/3+tan(-25π/4)
=sinπ/6+cosπ/3+tan(-π/4)
=1/2+1/2-1
=0
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
sin(α-π)=-sinα
cos(α-π)=-cosα
tan(α-π)=tanα
cot(α-π)=cotα
sec(α-π)=-secα
csc(α-π)=-cscα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
=(cosasina)/(-sinα*-cosα)
=1
sin25π/6+cos25π/3+tan(-25π/4)
=sinπ/6+cosπ/3+tan(-π/4)
=1/2+1/2-1
=0
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
sin(α-π)=-sinα
cos(α-π)=-cosα
tan(α-π)=tanα
cot(α-π)=cotα
sec(α-π)=-secα
csc(α-π)=-cscα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
展开全部
sin(π/2+a)cos(π/2-a)/cos(3π/2-a)sin(3π/2+a)
=cosasina/(-sina*-cosa)
=cosasina/(sinacosa)
=1
2) sin25π/6+cos25π/3+tan(-25π/4)
=sin(4π+π/6)+cos(8π+π/3)+tan(4π-25π/4)
=sinπ/6+cosπ/3+tan(-π/4)
=sinπ/6+cosπ/3+tan(-π/4)
=1/2+1/2-tanπ/4
=1-1
=0
=cosasina/(-sina*-cosa)
=cosasina/(sinacosa)
=1
2) sin25π/6+cos25π/3+tan(-25π/4)
=sin(4π+π/6)+cos(8π+π/3)+tan(4π-25π/4)
=sinπ/6+cosπ/3+tan(-π/4)
=sinπ/6+cosπ/3+tan(-π/4)
=1/2+1/2-tanπ/4
=1-1
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)sinacosa/(-cosa)(-sina)=1
2)sin(pi/6) cos(pi/3) tan(-pi/4)=1/2 1/2-1=0
2)sin(pi/6) cos(pi/3) tan(-pi/4)=1/2 1/2-1=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询