求一道排列组合题目

9个编号为1到9的球扔到河里,请问有多少种扔法?(比如只有2个球,有,1先扔,2先扔,1和2一起扔3种扔法)... 9个编号为1到9的球扔到河里,请问有多少种扔法?(比如只有2个球,有,1先扔,2先扔,1和2一起扔3种扔法) 展开
fitchs
2012-12-22 · TA获得超过6998个赞
知道大有可为答主
回答量:5113
采纳率:50%
帮助的人:2998万
展开全部
借鉴楼上的递推法
(1,1)=1
(2,1)=1 (2,2)=2
(3,1)=1 (3,2)=6 (3,3)=6
(4,1)=1 (4,2)=14 (4,3)=36 (4,4)=24
(5,1)=1 (5,2)=30 (5,3)=150 (5,4)=240 (5,5)=120
(6,1)=1 (6,2)=62 (6,3)=540 (6,4)=1560 (6,5)=1800 (6,6)=720
(7,1)=1 (7,2)=126 (7,3)=1806 (7,4)=8400 (7,5)=16800 (7,6)=15120 (7,7)=5040
(8,1)=1 (8,2)=254 (8,3)=5796 (8,4)=40824 (8,5)=126000 (8,6)=191520 (8,7)=141120 (8,8)=40320
(9,1)=1 (9,2)=510 (9,3)=18150 (9,4)=186480 (9,5)=834120 (9,6)=1905120 (9,7)=2328480 (9,8)=1451520 (9,9)=362880

总共有(9,1)+(9,2)+(9,3)+(9,4)+(9,5)+(9,6)+(9,7)+(9,8)+(9,9)=1+510+18150+186480+834120 +1905120+2328480+1451520+362880=7087261种扔法
xtimz
2012-12-22 · TA获得超过6051个赞
知道大有可为答主
回答量:1664
采纳率:82%
帮助的人:818万
展开全部
这个只能用递推做。这个题目就是:
把9个球划分为一个个非空子集,并且这些子集排列,有多少种方法。
比如:2个球,一共有:
{1} {2}
{2} {1}
{1,2}
这么3种划分+排列的方法。

设S(n,k) 是:n个球,划分为k个非空子集,并且将这些子集排列的总方法数。
我们最后要求的就是:S(9,1)+S(9,2)+...+S(9,9)

下面我们找S(n,k)的递推公式。
不妨设这n个球是编号1、2、...、n。我们考察第n个球。
有两种可能:
(1) 第n个球自成一个集合,
(2) 第n个球与其它某些球组成一个集合。

如果是第(1)种情形,我们把{n}这个第n个球自己组成的集合拿掉,那么剩下的就是n-1个球组成的k-1个子集的排列,这个个数是:S(n-1,k-1)。
再把第n个球自己的那个集合放进来,有k个位置可以放,所以,这第(1)种情形的个数是:
k S(n-1,k-1)

如果是第(2)种情形,我们依旧把第n个球拿掉,剩下的是n-1个球组成的k个子集的排列,这个个数是:S(n-1,k)。
再把第n个球放进来,一共有k个集合可供第n个球选择,所以,这第(2)种情形的个数是:
k S(n-1,k)

所以,S(n,k)的递推公式是:
S(n,k) = k S(n-1,k-1) + k S(n-1,k)

利用这个递推公式,一个一个算就可以了。
初始值:当k=1时,S(n,1)=1;当k>n时,S(n,k)=0

举个例子,3个球:
S(1,1) = 1
S(2,1) = 1, S(2,2) = 2S(1,1) + 2S(1,2) = 2
S(3,1) = 1, S(3,2) = 2S(2,1) + 2S(2,2) = 6, S(3,3) = 3S(2,2) + 3S(2,3) = 6
所以,3个球的方法有:1+6+6 = 13种
追问
不要过程,要答案
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1767063631李悦
2012-12-22 · TA获得超过163个赞
知道答主
回答量:77
采纳率:0%
帮助的人:20.4万
展开全部
(1,1)=1
(2,1)=1 (2,2)=2
(3,1)=1 (3,2)=6 (3,3)=6
(4,1)=1 (4,2)=14 (4,3)=36 (4,4)=24
(5,1)=1 (5,2)=30 (5,3)=150 (5,4)=240 (5,5)=120
(6,1)=1 (6,2)=62 (6,3)=540 (6,4)=1560 (6,5)=1800 (6,6)=720
(7,1)=1 (7,2)=126 (7,3)=1806 (7,4)=8400 (7,5)=16800 (7,6)=15120 (7,7)=5040
(8,1)=1 (8,2)=254 (8,3)=5796 (8,4)=40824 (8,5)=126000 (8,6)=191520 (8,7)=141120 (8,8)=40320
(9,1)=1 (9,2)=510 (9,3)=18150 (9,4)=186480 (9,5)=834120 (9,6)=1905120 (9,7)=2328480 (9,8)=1451520 (9,9)=362880

总共有(9,1)+(9,2)+(9,3)+(9,4)+(9,5)+(9,6)+(9,7)+(9,8)+(9,9)=1+510+18150+186480+834120 +1905120+2328480+1451520+362880=7087261
行吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
这个名有人取了
2012-12-21 · TA获得超过685个赞
知道小有建树答主
回答量:311
采纳率:100%
帮助的人:302万
展开全部

这个题目没什么好解法,如果要答案,只有慢慢算,结果很大。有思路,先分组(分一组,两组,三组……),然后再看没个分组有多少种顺序,详情看图……虽然很麻烦,但是也值两百分了吧

追问
应该有好的解法,如果时间到还没人回答出来,200就是你的了,谢谢
追答
好吧,我想想有什么更好的解法
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhongyangtony
2012-12-21 · TA获得超过1069个赞
知道小有建树答主
回答量:295
采纳率:0%
帮助的人:80.2万
展开全部
扔法=2的九次方=512种(包括一个球不扔)
更多追问追答
追问
3个一起扔有13种,你2的3次方只有8种
追答
你设三个球A,B,C,仍法
A
B
C
AB
AC
BC
ABC
一个球都不扔8种
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-12-21
展开全部
可以把题目在详细点么?
1、不管怎么仍,都要把这9个球都扔完么?
2、每次扔球的个数可以是随便几个么?(1到9个都可以是吧)
3、扔的顺序不同算不同的扔法,对么?
追问
1肯定要扔完
2对,每次可以随便扔 ,扔9次8 7 6 5 4 3 2 1次扔完都可以
3,对
追答
没想到好的办法,
关键在于对9分解的方式太多了
比如
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2
1 1 1 1 1 1 3
....
还是等大神来解答吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式