
已知函数f(x)=x^4+ax^3+2x^2+b(x属于R),其中a,b属于R,若函数f(x)仅在x
已知函数f(x)=x^4+ax^3+2x^2+b(x属于R),其中a,b属于R,若函数f(x)仅在x=0处有极值,求a的取值范围...
已知函数f(x)=x^4+ax^3+2x^2+b(x属于R),其中a,b属于R,若函数f(x)仅在x=0处有极值,求a的取值范围
展开
2个回答
展开全部
f'(x)=4x³+3ax²+4x=0
x(4x²+3ax+4)=0
仅在x=0处有极值,则:
4x²+3ax+4=0最多只有一个解,即:△=9a²-64≦0
得:-8/3≦a≦8/3
所以,a的取值范围是[-8/3,8/3]
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
x(4x²+3ax+4)=0
仅在x=0处有极值,则:
4x²+3ax+4=0最多只有一个解,即:△=9a²-64≦0
得:-8/3≦a≦8/3
所以,a的取值范围是[-8/3,8/3]
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询