对数运算怎么求值啊?
2个回答
展开全部
基本性质 如果a>0,且a≠1,M>0,N>0,那么:
1、a^log(a) N=N (对数恒等式)
证:设log(a) N=t,(t∈R)
则有a^t=N
a^(log(a)N)=a^t=N.
即证.[2]
2、log(a) a=1
证:因为a^b=a^b
令t=a^b
所以a^b=t,b=log(a)(t)=log(a)(a^b)
令b=1,则1=log(a)a
3、log(a) (M·N)=log(a) M+log(a) N
4、log(a) (M÷N)=log(a) M-log(a) N
5、log(a) M^n=nlog(a) M
6、log(a)b*log(b)a=1
7、log(a) b=log (c) b÷log (c) a (换底公式)
基本性质5推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x÷y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由换底公式
log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由基本性质5可得
log(a^n)(b^m)=m÷n×[log(a)(b)]参考资料:http://baike.baidu.com/view/3431429.htm
1、a^log(a) N=N (对数恒等式)
证:设log(a) N=t,(t∈R)
则有a^t=N
a^(log(a)N)=a^t=N.
即证.[2]
2、log(a) a=1
证:因为a^b=a^b
令t=a^b
所以a^b=t,b=log(a)(t)=log(a)(a^b)
令b=1,则1=log(a)a
3、log(a) (M·N)=log(a) M+log(a) N
4、log(a) (M÷N)=log(a) M-log(a) N
5、log(a) M^n=nlog(a) M
6、log(a)b*log(b)a=1
7、log(a) b=log (c) b÷log (c) a (换底公式)
基本性质5推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x÷y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由换底公式
log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由基本性质5可得
log(a^n)(b^m)=m÷n×[log(a)(b)]参考资料:http://baike.baidu.com/view/3431429.htm
追问
大姐 我都考完了 ==!
追答
学海无涯
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |