如图①,已知抛物线y=ax^2+bx(a≠0)经过A(3,0)B(4,4)两点 (1)求抛物线的解析式
如图①,已知抛物线y=ax^2+bx(a≠0)经过A(3,0)B(4,4)两点(1)求抛物线的解析式(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共...
如图①,已知抛物线y=ax^2+bx(a≠0)经过A(3,0)B(4,4)两点 (1)求抛物线的解析式 (2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及其点D的坐标 (3)如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD相似于△NOB的点P的坐标(点P,O,D分别与点N,O,B对应)
重点是第三题,(1)(2)题无所谓
各位,给我点思路吧 求解题过程。。
赏金不上限!!!!!! 展开
重点是第三题,(1)(2)题无所谓
各位,给我点思路吧 求解题过程。。
赏金不上限!!!!!! 展开
展开全部
看不到图,可能N的坐标是(-3/4,45/16)吧,作NM⊥y轴于点M,
则|NM|=3/4,|OM|=45/16.,
∵△POD∽△NOB,且OD/OB=2√2 / 4√2=1/2,∴OP/ON=1/2,
当P在第一象限时,作PQ⊥x轴于点Q,
可证Rt△OPQ∽Rt△ONM,∴OQ/OM=PQ/NM=OP/OQ=1/2,
∴|OQ|=45/32,|PQ|=3/8,故P(45/32,3/8),
另一点P'与P关于OD(直线y=-x)对称,∴P'(-3/8,-45/32)。
则|NM|=3/4,|OM|=45/16.,
∵△POD∽△NOB,且OD/OB=2√2 / 4√2=1/2,∴OP/ON=1/2,
当P在第一象限时,作PQ⊥x轴于点Q,
可证Rt△OPQ∽Rt△ONM,∴OQ/OM=PQ/NM=OP/OQ=1/2,
∴|OQ|=45/32,|PQ|=3/8,故P(45/32,3/8),
另一点P'与P关于OD(直线y=-x)对称,∴P'(-3/8,-45/32)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询