已知:方程x²+y²-2﹙m+3﹚x+2(1-4m²)y+16m^4+9=0表示一个圆 求该圆半径r的取值范围
3个回答
展开全部
解答:
x²+y²-2﹙m+3﹚x+2(1-4m²)y+16m^4+9=0
∴ x²-2(m+3)x+(m+3)²+y²+2(1-4m²)y+(1-4m²)²=-16m^4-9+(m+3)²++(1-4m²)²
∴ [x-(m+3)]²+[y+(1-4m²)]²=-16m^4-9+m²+6m+9+1-8m²+16m^4
∴ [x-(m+3)]²+[y+(1-4m²)]²=-7m²+6m+1
∴ r²=-7m²+6m+1=-7(m-3/7)²+16/7
∴ 0<r²<16/7
∴ r的取值范围是(0,4√7/7)
x²+y²-2﹙m+3﹚x+2(1-4m²)y+16m^4+9=0
∴ x²-2(m+3)x+(m+3)²+y²+2(1-4m²)y+(1-4m²)²=-16m^4-9+(m+3)²++(1-4m²)²
∴ [x-(m+3)]²+[y+(1-4m²)]²=-16m^4-9+m²+6m+9+1-8m²+16m^4
∴ [x-(m+3)]²+[y+(1-4m²)]²=-7m²+6m+1
∴ r²=-7m²+6m+1=-7(m-3/7)²+16/7
∴ 0<r²<16/7
∴ r的取值范围是(0,4√7/7)
展开全部
解:圆变形为 [x-(m+3)]²+[y+(1-4m²)]²=-7m²+6m+1=r²
∴ r²=-7(m-3/7)²+16/7
∴ 0<r²<16/7
∴ r的取值范围是(0,4√7/7)
∴ r²=-7(m-3/7)²+16/7
∴ 0<r²<16/7
∴ r的取值范围是(0,4√7/7)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
方程可变为(x-(m+3))²+(y+(1-4m²))²+16m^4+9-(m+3)²-(1-4m²)²=0
(x-(m+3))²+(y+(1-4m²))²=-(7m+1)(m-1),若圆存在,则-(7m+1)(m-1)>0即(7m+1)(m-1)<0 -(1/7)<m<1
r²=-7m²+6m+1=-7(m-3/7)²+16/7 (m-3/7)²大于等于0,0<r²<16/7 r的取值范围是(0,4√7/7)
(x-(m+3))²+(y+(1-4m²))²=-(7m+1)(m-1),若圆存在,则-(7m+1)(m-1)>0即(7m+1)(m-1)<0 -(1/7)<m<1
r²=-7m²+6m+1=-7(m-3/7)²+16/7 (m-3/7)²大于等于0,0<r²<16/7 r的取值范围是(0,4√7/7)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询