用换元法计算定积分∫【0到4】[√(2t + 1)]dt
2012-12-24
展开全部
令y = √(2t + 1)
y^2 = 2t + 1,两边微分
2y dy = 2 dt
dt = y dy,这里就是dt和dy之间的转换,看好了
当t = 0时y = √[2(0) + 1] = 1
当t = 4时y = √[2(4) + 1] = 3
∫[0→4] √(2t + 1) dt
= ∫[1→3] y * [y dy]
= ∫[1→3] y^2 dy
= (1/3)y^3 |[1→3]
= (1/3)[3^3 - 1^3]
= (1/3)(27 - 1)
= 26/3
y^2 = 2t + 1,两边微分
2y dy = 2 dt
dt = y dy,这里就是dt和dy之间的转换,看好了
当t = 0时y = √[2(0) + 1] = 1
当t = 4时y = √[2(4) + 1] = 3
∫[0→4] √(2t + 1) dt
= ∫[1→3] y * [y dy]
= ∫[1→3] y^2 dy
= (1/3)y^3 |[1→3]
= (1/3)[3^3 - 1^3]
= (1/3)(27 - 1)
= 26/3
追问
2y dy = 2 dt不懂
追答
(y^2)' = 2y,微分形式就是2y dy
(2t + 1)' = 2,微分形式就是2 dt
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询