
不定积分在几何学上的应用求由曲线r=1+cosθ与r=1所围成公共部分的面积
2个回答
展开全部
{ r = 1 + cosθ
{ r = 1
交点(r,θ)为[1,π/2]和[- 1,- π/2]
面积 = 2∫[0→π/2] (1/2)(1)² dθ + 2∫[π/2→π] (1/2)(1 + cosθ)² dθ
= [π/2] + [3π/4 - 2]
= 5π/4 - 2
= (5π - 8)/4
{ r = 1
交点(r,θ)为[1,π/2]和[- 1,- π/2]
面积 = 2∫[0→π/2] (1/2)(1)² dθ + 2∫[π/2→π] (1/2)(1 + cosθ)² dθ
= [π/2] + [3π/4 - 2]
= 5π/4 - 2
= (5π - 8)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询