已知椭圆C的方程为x^2/a^2+y^2/b^2=1(a>b>0)的离心率是根号3/2,以椭圆C的左顶点T作圆T:(x+2)^2+y^2=r^2

已知椭圆C的方程为x^2/a^2+y^2/b^2=1(a>b>0)的离心率是根号3/2,以椭圆C的左顶点T作圆T:(x+2)^2+y^2=r^2(r>0),设圆T与椭圆C... 已知椭圆C的方程为x^2/a^2+y^2/b^2=1(a>b>0)的离心率是根号3/2,以椭圆C的左顶点T作圆T:(x+2)^2+y^2=r^2(r>0),设圆T与椭圆C交于点M与点N。 求向量TM*向量TN的最小值,并求此时圆T的方程 展开
370116
高赞答主

2012-12-23 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.6亿
展开全部
由题意得到a=2,e=c/a=根号3/2,则有c=根号3,

故有b^2=a^2-c^2=4-3=1
故椭圆方程是x^2/4+y^2=1.
由对称性设M(x1,y1) N(x1,-y1)
所以TM*TN=(x1+2,y1)*(x1+2,-y1)=(x1+2)^2-y1^2=(x1+2)^2-1+x^2/4
=5/4x1^2+4x1+3=5/4(x1^2+16/5x1)+3=5/4(x1+8/5)^2-1/5
-2<=x1<=2,所以x1=-8/5时,取得最小值
所以y1=3/5
代入圆的方程可以知道:r=√13/5
圆的方程是(x+2)^2+y^2=13/5
zh10626
2013-01-13
知道答主
回答量:2
采纳率:0%
帮助的人:3074
展开全部
由题意得到a=2,e=c/a=根号3/2,则有c=根号3,
故有b^2=a^2-c^2=4-3=1
故椭圆方程是x^2/4+y^2=1.
由对称性设M(x1,y1) N(x1,-y1)
所以TM*TN=(x1+2,y1)*(x1+2,-y1)=(x1+2)^2-y1^2=(x1+2)^2-1+x^2/4
=5/4x1^2+4x1+3=5/4(x1^2+16/5x1)+3=5/4(x1+8/5)^2-1/5
-2<=x1<=2,所以x1=-8/5时,取得最小值
所以y1=3/5
代入圆的方程可以知道:r=√13/5
圆的方程是(x+2)^2+y^2=13/5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式