高数求救用分部积分法求∫上限1下限0 (x-1)3^xdx.麻烦了~
1个回答
展开全部
∫[0→1] (x - 1)3^x dx
= ∫[0→1] (x - 1) d[3^x/ln3]
= (1/ln3)(x - 1)3^x |[0→1] - (1/ln3)∫[0→1] 3^x d(x - 1)
= (1/ln3)[0 - (0 - 1)(1)] - (1/ln3)∫[0→1] 3^x dx
= 1/ln3 - 1/ln3 * [3^x/ln3] |[0→1]
= 1/ln3 - 1/(ln3)^2 * [3 - 1]
= (ln3 - 2)/(ln3)^2 ≈ - 0.7468
= ∫[0→1] (x - 1) d[3^x/ln3]
= (1/ln3)(x - 1)3^x |[0→1] - (1/ln3)∫[0→1] 3^x d(x - 1)
= (1/ln3)[0 - (0 - 1)(1)] - (1/ln3)∫[0→1] 3^x dx
= 1/ln3 - 1/ln3 * [3^x/ln3] |[0→1]
= 1/ln3 - 1/(ln3)^2 * [3 - 1]
= (ln3 - 2)/(ln3)^2 ≈ - 0.7468
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询