在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于C,D两点).连接PM,过点p 5

作PM的垂线与射线DA相交于点E(如图),设CP=x,DE=y.(1)写出y与x之间的关系式(2)若点E与点A重合,则x的值为要过程... 作PM的垂线与射线DA相交于点E(如图),设CP=x,DE=y.(1)写出y与x之间的关系式 (2)若点E与点A重合,则x的值为
要过程
展开
 我来答
姜芫苓
2013-03-31 · TA获得超过1975个赞
知道答主
回答量:194
采纳率:0%
帮助的人:63.4万
展开全部
分析:(1)由PE与PM垂直,利用平角的定义得到一对角互余,再由矩形的内角为直角,得到三角形DPE为直角三角形,可得出此直角三角形中一对锐角互余,利用同角的余角相等得到一对角相等,利用两对对应角相等的两三角形相似得到三角形PCM与三角形DPE相似,由相似得比例,将各自的值代入,即可列出y关于x的函数关系式;
(2)当E与A重合时,DE=DA=2,将y=2代入第一问得出的y与x的关系式中,即可求出x的值;
(3)存在,理由为:如图所示,过P作PH垂直于AB,由对称的性质得到:PD′=PD=4-x,ED′=ED=y=-x2+4x,EA=AD-ED=x2-4x+2,∠PD′E=∠D=90°,在Rt△D′PH中,PH=2,D′P=DP=4-x,根据勾股定理表示出D′H,再由△ED′A∽△D′PH,由相似得比例,将各自表示出的式子代入,可列出关于x的方程,求出方程的解即可得到满足题意的x的值.
解答:解:(1)∵PE⊥PM,∴∠EPM=90°,
∴∠DPE+∠CPM=90°,
又矩形ABCD,∴∠D=90°,
∴∠DPE+∠DEP=90°,
∴∠CPM=∠DEP,又∠C=∠D=90°,
∴△CPM∽△DEP,
∴CPDE=CMDP,
又CP=x,DE=y,AB=DC=4,∴DP=4-x,
又M为BC中点,BC=2,∴CM=1,
∴xy=14-x,
则y=-x2+4x;
(2)当E与A重合时,DE=AD=2,
∵△CPM∽△DEP,
∴CPDE=CMDP,
又CP=x,DE=2,CM=1,DP=4-x,
∴x2=14-x,即x2-4x+2=0,
解得:x=2+2或x=2-2,
则x的值为2+2或2-2;
(3)存在,过P作PH⊥AB于点H,
∵点D关于直线PE的对称点D′落在边AB上,
∴PD′=PD=4-x,ED′=ED=y=-x2+4x,EA=AD-ED=x2-4x+2,∠PD′E=∠D=90°,
在Rt△D′PH中,PH=2,D′P=DP=4-x,
根据勾股定理得:D′H=(4-x)2-22=x2-8x+12,
∵∠ED′A=180°-90°-∠PD′H=90°-∠PD′H=∠D′PH,∠PD′E=∠PHD′=90°,
∴△ED′A∽△D′PH,
∴ED′D′P=EAD′H,即-x2+4x4-x=x(4-x)4-x=x=x2-4x+2x2-8x+12,
整理得:2x2-4x+1=0,
解得:x=2±22,
当x=2+22或x=2-22时,此时E在DA上或延长线上,符合题意,
则x=2+22或x=2-22时,点D关于直线PE的对称点D′落在边AB上.
故答案为:(1)y=-x2+4x;(2)2-2
点评:此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,对称的性质,矩形的性质,以及一元二次方程的应用,利用了数形结合的数学思想,灵活运用相似三角形的判定与性质是解本题的关键.
凌瞳射手
2013-01-28 · TA获得超过299个赞
知道答主
回答量:109
采纳率:0%
帮助的人:50.5万
展开全部

 

参考资料: http://www.jyeoo.com/math/ques/detail/ea1296f6-1cb9-4759-93d1-551fdfc38d43?a=1

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-03-31
展开全部
y=-x2 4x
令y=2
-x2 4x=2
x=2±根号6
x=2 根号6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
译2008
2012-12-23 · TA获得超过626个赞
知道答主
回答量:95
采纳率:0%
帮助的人:37.5万
展开全部
图呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式