设A为n阶实矩阵,证明:若对于任意n维实列向量a,有a^TAa=0.则A为反对称矩阵 求问怎么证明
1个回答
展开全部
矩阵A=(aij)
由于对任意的n维实列向量a成立,所以要在a上面做文章:
令a=(0,...,1,...0)(a中第i个元素是1,其余的是0),代入可知aii=0
令a=(...,1,...,1,.....)(a中第i个和第j个元素是1,其余的是0)(i≠j),代入可得:aii+aji+aij+ajj=0
aii=ajj=0,故aij+aji=0
所以(aij)+a(ji)=0
即A+A^T=0,A=-A^T
从而A是反对称矩阵
由于对任意的n维实列向量a成立,所以要在a上面做文章:
令a=(0,...,1,...0)(a中第i个元素是1,其余的是0),代入可知aii=0
令a=(...,1,...,1,.....)(a中第i个和第j个元素是1,其余的是0)(i≠j),代入可得:aii+aji+aij+ajj=0
aii=ajj=0,故aij+aji=0
所以(aij)+a(ji)=0
即A+A^T=0,A=-A^T
从而A是反对称矩阵
来自:求助得到的回答
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询