设A为n阶实矩阵,证明:若对于任意n维实列向量a,有a^TAa=0.则A为反对称矩阵 求问怎么证明

百度网友6695682
2012-12-24 · TA获得超过1567个赞
知道小有建树答主
回答量:299
采纳率:100%
帮助的人:350万
展开全部
矩阵A=(aij)
由于对任意的n维实列向量a成立,所以要在a上面做文章:
令a=(0,...,1,...0)(a中第i个元素是1,其余的是0),代入可知aii=0
令a=(...,1,...,1,.....)(a中第i个和第j个元素是1,其余的是0)(i≠j),代入可得:aii+aji+aij+ajj=0
aii=ajj=0,故aij+aji=0
所以(aij)+a(ji)=0
即A+A^T=0,A=-A^T
从而A是反对称矩阵
来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式