请帮忙:limx趋于无穷(ln(1+x)/x)^(1/x)的极限

fin3574
高粉答主

推荐于2019-04-01 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134628

向TA提问 私信TA
展开全部
lim[x→∞] {[ln(1 + x)]/x}^(1/x)
= lim[x→∞] [(1/x)ln(1 + x)]^(1/x)
= lim[x→∞] {ln[(1 + x)^(1/x)]}^(1/x)
= {lnlim[x→∞] [(1 + x)^(1/x)]}^{lim[x→∞] 1/x}
= [ln(e)]^(0)
= 1^0
= 1

如果不是上面那个,就是下面这个
lim[x→∞] {ln[(1 + x)/x]}^(1/x)

= lim[x→∞] [ln(1 + 1/x)]^(1/x)
~ lim[x→∞] (1/x)^(1/x)、取自然对数
= lim[x→∞] ln[(1/x)^(1/x)]
= lim[x→∞] ln(1/x)/x、洛必达法则
= lim[x→∞] 1/(1/x) * (- 1/x²)
= lim[x→∞] (- 1/x)
= 0
= ln(1)、去掉自然对数
= 1
mike
2012-12-24 · 知道合伙人教育行家
mike
知道合伙人教育行家
采纳数:15109 获赞数:42259
担任多年高三教学工作。

向TA提问 私信TA
展开全部

.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式