12、计算二重积分∫∫ 1/根号下 1+x^2+y^2 其中积分区域为{(x,y)|x^2+y^2≤3}
展开全部
原式= ∫[0,2π] dθ ∫[0,1] √(1-r²)/(1+r²) r dr (极坐标变换)
= π ∫[0,1]√(1-r²)/(1+r²)d(r²) 令 u= r²
= π ∫[0,1] √(1-u) / √(1+u) du
= π ∫[0,1] (1-u) / √(1-u²) du
= π ∫[0,1] 1/ √(1-u²) du - π ∫[0,1] u / √(1-u²) du
= π [ arcsinu + √(1-u²) ] | [0,1]
= π²/2 - π
= π ∫[0,1]√(1-r²)/(1+r²)d(r²) 令 u= r²
= π ∫[0,1] √(1-u) / √(1+u) du
= π ∫[0,1] (1-u) / √(1-u²) du
= π ∫[0,1] 1/ √(1-u²) du - π ∫[0,1] u / √(1-u²) du
= π [ arcsinu + √(1-u²) ] | [0,1]
= π²/2 - π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询