导数习题
(1)y=(3+2^3)√1+4x^2(2)y=ln³√x+³√lnx(3)y=ln1+√x/1-√x(4)y=(sinnx)(cos^nx)(5)y...
(1) y=(3+2^3)√1+4x^2
(2) y=ln³√x +³√lnx
(3) y=ln 1+√ x / 1-√ x
(4) y=(sin nx)(cos^n x)
(5) y=ln tan x/2
(6) y=x^2 cot 1/x
谢谢 展开
(2) y=ln³√x +³√lnx
(3) y=ln 1+√ x / 1-√ x
(4) y=(sin nx)(cos^n x)
(5) y=ln tan x/2
(6) y=x^2 cot 1/x
谢谢 展开
2个回答
展开全部
导数习题
(1) y=(3+2³)√(1+4x²)=11√(1+4x²)
解:y'=88x/[2√(1+4x²)]=44x/√(1+4x²);
(2) y=ln³√x +³√lnx
解:y=(1/3)lnx+(lnx)^(1/3)
y'=1/(3x)+(1/3)[(lnx)^(-2/3)]/x=1/(3x)+1/[3x(lnx)^(2/3)]
(3) y=ln(1+√ x)/(1-√ x)
解:定义域:x≧0且(1+√ x)/(1-√ x)>0,故得定义域为0≦x<1.
故y=ln(1+√ x)-ln(1-√ x);
y'=1/[2(1+√x)√x]+1/[2(1-√ x)√x]=(1/2)[1/(x+√x)-1/(x-√x)]=-(√x)/(x²-x)
(4) y=(sin nx)(cosⁿx)
解:y'=ncos(nx)(cosⁿx)+nsin(nx)(cosⁿ⁻¹x)(-sinx)=n[cos(nx)cosⁿx-sin(nx)sinxcosⁿ⁻¹x]
(5) y=ln tan (x/2)
解:y'=[1/tan(x/2)][tan(x/2)]'=[1/tan(x/2)]sec²(x/2)(x/2)'=sec²(x/2)/[2tan(x/2)]
=1/[2sin(x/2)cos(x/2)]=1/sinx
(6) y=x²cot(1/x)
解:y'=2xcot(1/x)-x²[csc²(1/x)](1/x)'=2xcot(1/x)-x²[csc²(1/x)](-1/x²)=2xcot(1/x)+csc²(1/x)
=[2xcos(1/x)]/sin(1/x)+1/sin²(1/x)=[2xcos(1/x)sin(1/x)+1]/sin²(1/x)=[1+xsin(2/x)]/sin²(1/x)
(1) y=(3+2³)√(1+4x²)=11√(1+4x²)
解:y'=88x/[2√(1+4x²)]=44x/√(1+4x²);
(2) y=ln³√x +³√lnx
解:y=(1/3)lnx+(lnx)^(1/3)
y'=1/(3x)+(1/3)[(lnx)^(-2/3)]/x=1/(3x)+1/[3x(lnx)^(2/3)]
(3) y=ln(1+√ x)/(1-√ x)
解:定义域:x≧0且(1+√ x)/(1-√ x)>0,故得定义域为0≦x<1.
故y=ln(1+√ x)-ln(1-√ x);
y'=1/[2(1+√x)√x]+1/[2(1-√ x)√x]=(1/2)[1/(x+√x)-1/(x-√x)]=-(√x)/(x²-x)
(4) y=(sin nx)(cosⁿx)
解:y'=ncos(nx)(cosⁿx)+nsin(nx)(cosⁿ⁻¹x)(-sinx)=n[cos(nx)cosⁿx-sin(nx)sinxcosⁿ⁻¹x]
(5) y=ln tan (x/2)
解:y'=[1/tan(x/2)][tan(x/2)]'=[1/tan(x/2)]sec²(x/2)(x/2)'=sec²(x/2)/[2tan(x/2)]
=1/[2sin(x/2)cos(x/2)]=1/sinx
(6) y=x²cot(1/x)
解:y'=2xcot(1/x)-x²[csc²(1/x)](1/x)'=2xcot(1/x)-x²[csc²(1/x)](-1/x²)=2xcot(1/x)+csc²(1/x)
=[2xcos(1/x)]/sin(1/x)+1/sin²(1/x)=[2xcos(1/x)sin(1/x)+1]/sin²(1/x)=[1+xsin(2/x)]/sin²(1/x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询