求e^(x^2)的不定积分,要过程

崇元化65
高粉答主

2019-09-29 · 说的都是干货,快来关注
知道小有建树答主
回答量:202
采纳率:100%
帮助的人:3万
展开全部

解析:

∫e^(-x^2)dx=(-1/2)∫de^(-x^2)/x

=(-1/2)e^(-x^2)/x -(1/2)∫e^(-x^2)dx/x^2

=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3+(1/4)∫e^(-x^2)d(1/x^3)

=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)∫e^(-x^2)d(1/x^4)
x^2

=t   ∫e^(-x^2)d(1/x^4)

=∫e^(-t)d(1/t^2)=e^(-t)/t^2+∫e^(-t)dt/t^2

=e^(-t)/t^2-e^(-t)/t-∫e^(-t)dt/te^x

=1+x+x^2/2!+x^3/3!+x^4/4!+..+x^n/n!e^(-t)

=1+(-t)+(-t)^2/2!+(-t)^3/3!+..+(-t)^n/n!

∫e^(-t)dt/t=lnt-t -t^2/(2*2!)-t^3/(3*3!)-..-t^n/(n*n!)

所以∫e^(-x^2)dx=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)e^(-x^2)/x^4-(1/8)e^(-x^2)/x^2-(1/8)[ln(x^2)-x^2-(x^2)^2/(2*2!)-(x^2)^3/(3*3!)-..-(x^2)^n/(n*n!)]

扩展资料:

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数。因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

参考资料来源:百度百科-不定积分

chenyuxiangcyx
2012-12-25 · TA获得超过4883个赞
知道小有建树答主
回答量:609
采纳率:100%
帮助的人:339万
展开全部
∫ e^(x^2) dx是超越积分,没有有限解析式
对e^(x^2)进行泰勒展开
∫ e^(x^2) dx
= ∫ [ Σ[n=(0,∝] (x^2)^n/n! ] dx
= ∫ [ Σ[n=(0,∝] x^(2n)/n! ] dx
= Σ[n=(0,∝] [ ∫ x^(2n)/n! dx ]
= Σ[n=(0,∝] x^(2n+1)/[(2n+1)n!]
这是一个无限解析式
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2012-12-25 · 超过27用户采纳过TA的回答
知道答主
回答量:96
采纳率:0%
帮助的人:78.6万
展开全部

亲,这样的函数的原函数不是初等函数,不能用有限的解析式写出来的。

但可以写成无穷级数:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式