已知函数f(x)=sin^2x+2sinxcosx+3cos^2x,x属于R
已知函数f(x)=sin^2x+2sinxcosx+3cos^2x,x属于R,求:(1)求函数f(x)的最大值及其取得最大值的自变量x的集合(2)函数f(x)的单调增区间...
已知函数f(x)=sin^2x+2sinxcosx+3cos^2x,x属于R,求:
(1)求函数f(x)的最大值及其取得最大值的自变量x的集合
(2)函数f(x)的单调增区间 展开
(1)求函数f(x)的最大值及其取得最大值的自变量x的集合
(2)函数f(x)的单调增区间 展开
3个回答
展开全部
f(x)=sin²x+cos²x+sin2x+2cos²x-1+1
=1+sin2x+cos2x+1
=√2sin(2x+π/4)+2
(1)f(x)的最大值为2+√2,
2x+π/4=π/2+2kπ
2x=π/4+2kπ
x=π/8+kπ
f(x)取最大值时,x的集合为{x|x=π/8+kπ,k∈Z}
(2)递增区间:
-π/2+2kπ<2x+π/4<π/2+2kπ
-3π/4+2kπ<2x<π/4+2kπ
-3π/8+kπ<x<π/8+kπ
所以,f(x)的递增区间为(-3π/8+kπ,π/8+kπ)k∈Z
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
=1+sin2x+cos2x+1
=√2sin(2x+π/4)+2
(1)f(x)的最大值为2+√2,
2x+π/4=π/2+2kπ
2x=π/4+2kπ
x=π/8+kπ
f(x)取最大值时,x的集合为{x|x=π/8+kπ,k∈Z}
(2)递增区间:
-π/2+2kπ<2x+π/4<π/2+2kπ
-3π/4+2kπ<2x<π/4+2kπ
-3π/8+kπ<x<π/8+kπ
所以,f(x)的递增区间为(-3π/8+kπ,π/8+kπ)k∈Z
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
展开全部
函数的化简过程如上图(如有步骤不明白可以来问我)
最大值是由sin来决定的。无论sin什么,最大值都是1,最小值都是-1.
所以,函数f(x)最大值=2 + √2 ×1 = 2 + √2
我们都知道,sin90°=1是最大的。所以只要sin后面括号里面那个数值=90°,或者是绕了很多360°后再到90°位置,也能够取得同样最大值
当函数取最大值是,sin(2x + π/4)=1 所以,
2x + π/4 = π/2 + 2kπ (90°是π/2,2kπ 是k个2π,也就是k个360°,360°是周期,一周一周都有最大值)k∈Z。属于整数
解得x=π/8 + kπ
第二小题。
同理,要求增区间,先知道sin这个函数原本的增区间是什么。
sin函数原本的增区间是[-π/2,π/2]
考虑周期,很多歌增区间。那么就是[-π/2+ 2kπ ,π/2+ 2kπ ] k∈Z
所以sin括号里面那个东西的范围就限定下来了。既是:
-π/2+ 2kπ ≤ 2x + π/4 ≤ π/2+ 2kπ
化简得到:
-3π/8+kπ<x<π/8+kπ ,k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-12-25 · 知道合伙人教育行家
关注
展开全部
f(x)=(sin^2x+cos^2x)+2cos^2x+sin2x=1+1+cos2x+sin2x=√2sin(2x+#/4)+2. (#表示π)
(1)最大值=2+√2,2x+#/4=2k#+#/2, 所以x=k#+#/8 (k为整数)
(2)2k#-#/2<2x+#/4<2k#+#/2, 所以k#-3#/8<x<k#+#/8为增区间
(1)最大值=2+√2,2x+#/4=2k#+#/2, 所以x=k#+#/8 (k为整数)
(2)2k#-#/2<2x+#/4<2k#+#/2, 所以k#-3#/8<x<k#+#/8为增区间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询