X和Y的联合分布律、怎么求它们的期望E(XY)
2个回答
展开全部
相互独立是关键。对于离散型,P(X=i, Y=j) = P(X=i) * P(Y=j),谨记。E(XY)的求法可以先求出XY的分布律。
(1) X和Y的联合分布律:
X\Y 3 4 Pi.
1 0.32 0.08 0.4
2 0.48 0.12 0.6
P.j 0.8 0.2
(2) XY的分布律:
XY 3 4 6 8
P 0.32 0.08 0.48 0.12
E(XY) = 3 * 0.32 + 4 * 0.08 + 6 * 0.48 + 8 * 0.12 = 5.12
连续变量
类似地,对连续随机变量而言,联合分布概率密度函数为fX,Y(x, y),其中fY|X(y|x)和fX|Y(x|y)分别代表X = x时Y的条件分布以及Y = y时X的条件分布;fX(x)和fY(y)分别代表X和Y的边缘分布。
同样地,因为是概率分布函数,所以必须有:∫x∫y fX,Y(x,y) dy dx=1
独立变量
若对于任意x和y而言,有离散随机变量 :
P(X=x and Y=y)=P(X=x) ·P(Y=y)
或者有连续随机变量:
pX,Y(x,y)=pX(x)·pY(y)
则X和Y是独立的。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
解:相互独立是关键。对于离散型,P(X=i, Y=j) = P(X=i) * P(Y=j),谨记。E(XY)的求法可以先求出XY的分布律。
(1) X和Y的联合分布律:
X\Y 3 4 Pi.
1 0.32 0.08 0.4
2 0.48 0.12 0.6
P.j 0.8 0.2
(2) XY的分布律:
XY 3 4 6 8
P 0.32 0.08 0.48 0.12
E(XY) = 3 * 0.32 + 4 * 0.08 + 6 * 0.48 + 8 * 0.12 = 5.12
(1) X和Y的联合分布律:
X\Y 3 4 Pi.
1 0.32 0.08 0.4
2 0.48 0.12 0.6
P.j 0.8 0.2
(2) XY的分布律:
XY 3 4 6 8
P 0.32 0.08 0.48 0.12
E(XY) = 3 * 0.32 + 4 * 0.08 + 6 * 0.48 + 8 * 0.12 = 5.12
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询