设函数f(x)=ax^2+bx+c,且f(1)=-a/2,3a>2c>2b, 求证(1)a>0,-3<b/a<-3/4:

(2)函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(X)的两个零点,则√2<=|x1-x2|<√57/4... (2)函数 f(x)
在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(X)的两个零点,则√2<=|x1-x2|<√57/4
展开
多餘De付出
2012-12-26
知道答主
回答量:1
采纳率:0%
帮助的人:1549
展开全部
提示:
可以参考下题
设函数f(x)=(ax^2+1)/(bx+c)(a、b、c∈Z)为奇函数,又f(1)=2,f(2)<3,且f(x)在[1,+∞)上递增
(1)求a、b、c的值
(2)当x<0时,讨论f(x)的单调性

因为F(-x)=-F(x) ,所以 (ax^2+1)/(-bx+c)=- (ax^2+1)/(bx+c)
即 c= 0 ,所以f(x)=(ax^2+1)/(bx)
因为f(1)=2 ,所以 (a+1)/b =2 ,即 a+1=2b
因为f(2)<3,且f(x)在[1,+∞)上递增 ,所以F(1)<F(2)<3
所以2<(4a+1)/2b <3 ,即 2<(4a+1)/(a+1)<3 ,解得:(1/2)<a<2
所以 a=1 ,b= 1 ,所以 F(x)=(x^2+1)/x

当x<0时,设m<n<0 ,则
F(m)-F(n)= (m^2+1)/m - (n^2+1)/n = (1-mn)(n-m)/mn
当 mn<1时,F(m)-F(n)>0 ,F(x)递增
当mn≥1时,F(m)-F(n)≤0 ,F(x)递减
帅男吖
2012-12-29
知道答主
回答量:3
采纳率:0%
帮助的人:4315
展开全部
设函数f(x)=(ax^2+1)/(bx+c)(a、b、c∈Z)为奇函数,又f(1)=2,f(2)<3,且f(x)在[1,+∞)上递增
(1)求a、b、c的值
(2)当x<0时,讨论f(x)的单调性

因为F(-x)=-F(x) ,所以 (ax^2+1)/(-bx+c)=- (ax^2+1)/(bx+c)
即 c= 0 ,所以f(x)=(ax^2+1)/(bx)
因为f(1)=2 ,所以 (a+1)/b =2 ,即 a+1=2b
因为f(2)<3,且f(x)在[1,+∞)上递增 ,所以F(1)<F(2)<3
所以2<(4a+1)/2b <3 ,即 2<(4a+1)/(a+1)<3 ,解得:(1/2)<a<2
所以 a=1 ,b= 1 ,所以 F(x)=(x^2+1)/x

当x<0时,设m<n<0 ,则
F(m)-F(n)= (m^2+1)/m - (n^2+1)/n = (1-mn)(n-m)/mn
当 mn<1时,F(m)-F(n)>0 ,F(x)递增
当mn≥1时,F(m)-F(n)≤0 ,F(x)递减
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式