求不定积分:∫ ln(x+√(1+x^2) )dx
x=tana
dx= (seca)^2 da
∫ ln(x+√(1+x^2) )dx
=∫行培 (seca)^2ln(tana+seca) ) da
=∫ ln(tana+seca) ) d(tana)
= tana ln(tana+seca)) - ∫ [tana/(tana+seca)] ( (seca)^2+ secatana) da
=tana ln(tana+seca)) -∫ tana(seca) da
=tana ln(tana+seca)) -seca + C
=xln(x+√(1+x^2)) - √(1+x^2) + C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫察带早 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫败雀 cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
let
x=tana
dx= (seca)^2 da
∫ ln(x+√(1+x^2) )dx
=∫ (seca)^2ln(tana+seca) ) da
=∫丛芹念 ln(tana+seca) ) d(tana)
= tana ln(tana+seca)) - ∫ [tana/(tana+seca)] ( (seca)^2+ secatana) da
=tana ln(tana+seca)) -∫ tana(seca) da
=tana ln(tana+seca)) -seca + C
=xln(x+√(1+x^2)) - √渗困(1+x^2) + C
=xln(x+√(1+x^2) -∫xd(ln(x+√(1+x^2))
[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1+x^2)
=xln(x+√告蠢(1+x^2)-∫xdx/√袜悄陪(1+x^2)
=xln(x+√运芹(1+x^2)-(1/2)∫d(1+x^2)/√(1+x^2)
=xln(x+√(1+x^2)-√(1+x^2)+C
广告 您可能关注的内容 |