[2sin50+sin10(1+√3*tan10)]√(1+cos20)
1个回答
展开全部
[2sin50°+sin10°(1+√3*tan10°)]√(1+cos20°)
=[2sin50°+sin10°(cos10°+√3*sin10°)/cos10°]√(2cos²10°)
=(√2)*cos10°[2sin50°+2sin10°(1/2 *cos10°+√3/2 *sin10°)/cos10°]
=(√2)*cos10°[2sin50°+2sin10°(1/2 *cos10°+√3/2 *sin10°)/cos10°]
=2√2*[sin50°cos10°+sin10°cos(60°-10°)]
=2√2*(sin50°cos10°+sin10°cos50°)
=2√2*sin(50°+10°)
=2√2*sin60°
=2√2*(√3)/2
=√6
=[2sin50°+sin10°(cos10°+√3*sin10°)/cos10°]√(2cos²10°)
=(√2)*cos10°[2sin50°+2sin10°(1/2 *cos10°+√3/2 *sin10°)/cos10°]
=(√2)*cos10°[2sin50°+2sin10°(1/2 *cos10°+√3/2 *sin10°)/cos10°]
=2√2*[sin50°cos10°+sin10°cos(60°-10°)]
=2√2*(sin50°cos10°+sin10°cos50°)
=2√2*sin(50°+10°)
=2√2*sin60°
=2√2*(√3)/2
=√6
追问
好难怎么学啊?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询