设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)]

黑锅黑果
2012-12-28 · TA获得超过1990个赞
知道小有建树答主
回答量:980
采纳率:0%
帮助的人:647万
展开全部
Z=min(X,Y),Fmin(z)=1- {1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!
还有一种解法:Z=min(X,Y)=1/2(X+Y-|X-Y|) 则E(Z)=E(1/2(X+Y-|X-Y|) )=1/2E(X)+1/2E(Y)-1/2E(|X-Y|)
显然E(X)=E(Y)=0而X-Y~N(0,2),那么下面的就好做了!
百度网友f376ba5
2013-05-06
知道答主
回答量:9
采纳率:0%
帮助的人:4万
展开全部
记Z=min(X,Y)],X分布函数F1(x),Y分布函数F2(y),F1=F2
Z分布函数F(z)=P[Z<z]=1-P[Z>z]=1-P[min(X,Y)>z]=1=P[X>z,Y>z]=1-P(X>z)P(Y>z)
=1-[1-F1(z)][1-F2(z)]=2F1(z)-F(z)^2
在两边求导,求出Z的密度函数,然后E(min(x,y))就可以求出了》
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式