不定积分问题……
2个回答
展开全部
分解部分式:设1/(x^3+8)=1/(x+2)(x^2-2x+4)=a/(x+2)+(bx+c)/(x^2-2x+4)
通分:1=a(x^2-2x+4)+(bx+c)(x+2)
1=x^2(a+b)+x(-2a+c+2b)+4a+2c
对比系数:a+b=0,-2a+c+2b=0,4a+2c=1
解得:a=1/12,b=-1/12,c=1/3
原式=1/12∫1/(x+2)dx-1/12∫(x-4)/(x^2-2x+4)dx
=1/12 ln|x+2|-1/12 ∫(x-1-3)/[(x-1)^2+3]dx
=1/2ln|x+2|-1/12∫(x-1)dx/[(x-1)^2+3]+1/4∫dx/[(x-1)^2+3]
=1/2 ln|x+2|-1/24 ln[(x-1)^2+3]+ 1/(4√3)* arctan[(x-1)/√3]+C
通分:1=a(x^2-2x+4)+(bx+c)(x+2)
1=x^2(a+b)+x(-2a+c+2b)+4a+2c
对比系数:a+b=0,-2a+c+2b=0,4a+2c=1
解得:a=1/12,b=-1/12,c=1/3
原式=1/12∫1/(x+2)dx-1/12∫(x-4)/(x^2-2x+4)dx
=1/12 ln|x+2|-1/12 ∫(x-1-3)/[(x-1)^2+3]dx
=1/2ln|x+2|-1/12∫(x-1)dx/[(x-1)^2+3]+1/4∫dx/[(x-1)^2+3]
=1/2 ln|x+2|-1/24 ln[(x-1)^2+3]+ 1/(4√3)* arctan[(x-1)/√3]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询