∫0-1/2 arccosx^1/2dx,定积分 全解答!!!!!!!!!!!
2个回答
展开全部
用分步积分
∫[0,1/2] arccosx^1/2dx
=xarccos√x[0,1/2]-∫[0,1/2] xdarccos√x
=π/8+∫[0,1/2] x/√(1-x)dx
=π/8+∫[0,1/2] (x-1+1)/√(1-x)dx
=π/8+∫[0,1/2] [-√(1-x)+1/√(1-x)]dx
=π/8+[2/3(1-x)^(3/2)-2√(1-x)[0,1/2]
=π/8+√2/6-√2/2-2/3+2
=π/8+√2/3+4/3
∫[0,1/2] arccosx^1/2dx
=xarccos√x[0,1/2]-∫[0,1/2] xdarccos√x
=π/8+∫[0,1/2] x/√(1-x)dx
=π/8+∫[0,1/2] (x-1+1)/√(1-x)dx
=π/8+∫[0,1/2] [-√(1-x)+1/√(1-x)]dx
=π/8+[2/3(1-x)^(3/2)-2√(1-x)[0,1/2]
=π/8+√2/6-√2/2-2/3+2
=π/8+√2/3+4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询