数据中心化和标准化在回归分析中的意义是什么

 我来答
生活类答题小能手
高能答主

2019-09-17 · 专注生活类答题,解决生活问题
生活类答题小能手
采纳数:1644 获赞数:295661

向TA提问 私信TA
展开全部

为了能正确地真正反映实际情况,必须对原始数据进行加工处理,使之规范化。数据规格化对相似系数有较大的影响。数据经过规格化后其计算结果与未经规格化的计算结果差别较大。这是由于相似系数取决于坐标原点的位置。在规格化后,坐标原点移动,使样品之间的夹角改变很大。

数据标准化

设有n个样品,每个样品测量了m项指标(变量),得到如下原始数据矩阵:


其中,i为样品个数,j为变量个数。xij表示第i个样品第j个变量的观测值。

设变换后的数据记为zij,则:

其中,

写成矩阵形式为:

则称为Z=(zij)为标准化数据。若所取样品构成的变量服从正态分布,则标准化后的数据Zij~N(0,1)中心化



扩展资料

数据分析之前,通常将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化指统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。

数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。

数据标准化的方法有很多种,常用的有“最小—最大标准化”、“Z-score标准化”和“按小数定标标准化”等。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。

参考资料来源:百度百科-数据标准化

参考资料来源:百度百科-数据规格化

qinqqt
高粉答主

2019-09-20 · 醉心答题,欢迎关注
知道小有建树答主
回答量:948
采纳率:100%
帮助的人:24.3万
展开全部

对数据中心化和标准化的目的是消除特征之间的差异性,可以使得不同的特征具有相同的尺度,让不同特征对参数的影响程度一致。简言之,当原始数据不同维度上的特征的尺度(单位)不一致时,需要中心化和标准化步骤对数据进行预处理。

扩展资料:

因为原始数据往往自变量的单位不同,会给分析带来一定困难,又因为数据量较大,可能会因为舍入误差而使计算结果并不理想。数据中心化和标准化有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。

回归分析中,通常需要对原始数据进行中心化处理和标准化处理。通过中心化和标准化处理,得到均值为0,标准差为1的服从标准正态分布的数据。

参考资料:

百度百科——数据标准化

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
有点减肥想法的大平
高粉答主

推荐于2017-10-03 · 爱吃甜食的程序员大平用来记录日常生活!
有点减肥想法的大平
采纳数:3827 获赞数:68975

向TA提问 私信TA
展开全部
数据中心化和标准化在回归分析中的意义是取消由于量纲不同、自身变异或者数值相差较大所引起的误差。
数据标准化是指:数值减去均值,再除以标准差;所谓中心化,是指变量减去它的均值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-06-17
展开全部
取消由于量纲不同、自身变异或者数值相差较大所引起的误差
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式