已知三角形的顶点分别为点A(2,2),B(6,-2),C(0,-1),求三角形ABC各边上的中线所在直线的方程。
答案:AB中线y=-x+4,AC中线y=(4x/3)-(5/6),BC的中线y=(-3X/2)+(6/2),请问答案对不对?...
答案:AB中线y=-x+4,AC中线y=(4x/3)-(5/6),BC的中线y=(-3X/2)+(6/2),请问答案对不对?
展开
2个回答
2012-12-30 · 知道合伙人教育行家
关注
展开全部
追问
请问你的K是如何求出来,详细解说
追答
AB 中点为 (4,0),k=(0+1)/(4-0)=1/4 ,方程 y-0=1/4*(x-4) ,化为 x-4y-4=0 ;
AC 中点为(1,1/2),k=(1/2+2)/(1-6)= -1/2 ,方程 y-1/2= -1/2*(x-1) ,化为 x+2y-2=0 ;
BC 中点为(3,-3/2),k=(-3/2-2)/(3-2)= -7/2 ,方程 y+3/2= -7/2*(x-3) ,化为 7x+2y-18=0 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询