
初一 [(x+3)/(2x-4)]/[5/(x-2)-x-2] 化简
1个回答
展开全部
解:原式=(x+3)/(2x-4)÷[5/(x-2)-x-2]
=(x+3)/[2(x-2)]÷[5/(x-2)-(x+2)(x-2)/(x-2)]
=(x+3)/[2(x-2)]÷{[(5-(x²-4)]/(x-2)}
=(x+3)/[2(x-2)]÷[-(x²-9)/(x-2)]
=(x+3)/[2(x-2)]×[-(x-2)/(x+3)(x-3)]
= -1/[2(x-3)]
O(∩_∩)O欢迎采纳,不懂可追问!
=(x+3)/[2(x-2)]÷[5/(x-2)-(x+2)(x-2)/(x-2)]
=(x+3)/[2(x-2)]÷{[(5-(x²-4)]/(x-2)}
=(x+3)/[2(x-2)]÷[-(x²-9)/(x-2)]
=(x+3)/[2(x-2)]×[-(x-2)/(x+3)(x-3)]
= -1/[2(x-3)]
O(∩_∩)O欢迎采纳,不懂可追问!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询