1.二次函数y=ax²+bx+c其中 关于a,b,c的知识点: 2.二次函数交点式y=a(x-x1)(x-x2)是如何转化得来的?

如上,人教版九下二次函数*号与*号之前这两课没学好.请各位帮忙只有那么点分都给你们了!... 如上, 人教版九下 二次函数 *号与*号之前 这两课没学好. 请各位帮忙 只有那么点分 都给你们了! 展开
 我来答
数学好好玩
2012-12-31 · 中小学教师、教育领域创作者
数学好好玩
采纳数:12235 获赞数:136783

向TA提问 私信TA
展开全部

1、抛物线与a、b、c的关系如下:

2、当抛物线y= ax²+bx+c与X轴有两个交点时,交点的横坐标就是一元二次方程ax²+bx+c=0的两根x1、x2,

当一元二次方程ax²+bx+c=0的有两根x1、x2时,

ax²+bx+c可分解为ax²+bx+c=a(x-x1)(x-x2)

所以,抛物线的解析式可以表达为y=a(x-x1)(x-x2).

追问
1.中 关于b的知识点可否详细解释?  多谢!!!
猪猪侠sty
2013-01-05 · TA获得超过653个赞
知道答主
回答量:128
采纳率:0%
帮助的人:32.2万
展开全部
二次函数的表达式是f(x)=ax^2+bx+c(a不为0)。在这个多项式中,x是自变量,y是因变量,常数项是c,一次项系数是b,二次项系数是a。它的图像是一条主轴与y轴平行的抛物线。
  二次函数贯穿中学数学,我们从初中与二次函数初次接触,它将几何和代数有机结合,是中考重点内容,也是高中代数的奠基石。
  二次函数主要有哪些知识点?
  I.定义与定义表达式
  一般地,自变量x和因变量y之间存在如下关系:
  y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
  则称y为x的二次函数。
  二次函数表达式的右边通常为二次三项式。
  II.二次函数的三种表达式
  一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
  顶点式:y=a(x-h)^2;+k[抛物线的顶点P(h,k)]
  交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]
  注:在3种形式的互相转化中,有如下关系:
  h=-b/2ak=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2a
  III.二次函数的图像
  在平面直角坐标系中作出二次函数y=x2的图像,
  可以看出,二次函数的图像是一条抛物线。
  IV.抛物线的性质
  1.抛物线是轴对称图形。对称轴为直线
  x=-b/2a。
  对称轴与抛物线唯一的交点为抛物线的顶点P。
  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
  2.抛物线有一个顶点P,坐标为
  P[-b/2a,(4ac-b^2;)/4a]。
  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
  3.二次项系数a决定抛物线的开口方向和大小。
  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
  |a|越大,则抛物线的开口越小。
  4.一次项系数b和二次项系数a共同决定对称轴的位置。
  当a与b同号时(即ab>0),对称轴在y轴左;
  当a与b异号时(即ab<0),对称轴在y轴右。
  5.常数项c决定抛物线与y轴交点。
  抛物线与y轴交于(0,c)
  6.抛物线与x轴交点个数
  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
  Δ=b^2-4ac<0时,抛物线与x轴没有交点。
  V.二次函数与一元二次方程
  特别地,二次函数(以下称函数)y=ax^2;+bx+c,
  当y=0时,二次函数为关于x的一元二次方程(以下称方程),
  即ax^2;+bx+c=0
  此时,函数图像与x轴有无交点即方程有无实数根。
  函数与x轴交点的横坐标即为方程的根。
  画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。
  二次函数解析式的几种形式
  (1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).
  (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
  (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
  说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点
  如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k
  定义与定义表达式
  一般地,自变量x和因变量y之间存在如下关系:
  y=ax^2+bx+c
  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
  则称y为x的二次函数。
  二次函数表达式的右边通常为二次三项式。
  x是自变量,y是x的函数
  二次函数的三种表达式
  ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
  ②顶点式[抛物线的顶点P(h,k)]:y=a(x-h)^2+k
  ③交点式[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]:y=a(x-x1)(x-x2)
  以上3种形式可进行如下转化:
  ①一般式和顶点式的关系
  对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即
  h=-b/2a=(x1+x2)/2
  k=(4ac-b^2)/4a
  ②一般式和交点式的关系
  x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式