已知cosa=1/7,cos(a-b)=13/14且,0<b<a<π/2,求tan(π-a)的值
1个回答
展开全部
cosa=1/7所以sina=4√3/7
tana=sina/cosa = 4√3
tan(π-a)=-tana=- 4√3
cosb=cos(a-b-a)=cos(a-b)cosa+sin(a-b)sina
0<b<a<π/2,0<a-b<π/2
sina=4√3/7 sin(a-b)=3√3/14
所以cos(a-b-a)=cosb=cos(a-b)cosa+sin(a-b)sina
=13/14 * 1/7 +4√3/7 * 3√3/14
=13/98 + 36/98
=49/98
=1/2
b=π/3
tana=sina/cosa = 4√3
tan(π-a)=-tana=- 4√3
cosb=cos(a-b-a)=cos(a-b)cosa+sin(a-b)sina
0<b<a<π/2,0<a-b<π/2
sina=4√3/7 sin(a-b)=3√3/14
所以cos(a-b-a)=cosb=cos(a-b)cosa+sin(a-b)sina
=13/14 * 1/7 +4√3/7 * 3√3/14
=13/98 + 36/98
=49/98
=1/2
b=π/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询